Информационно развлекательный портал
Поиск по сайту

Равновесие в смешанных стратегиях теория игр. Равновесие нэша. 1 Проблема существования равновесий Нэша

Ситуации, когда в игре существует равновесие в доминирующих стратегиях, достаточно редки. И далеко не во всех играх можно найти решение, отбрасывая строго доминируемые стратегии. Соответствующий пример игры представлен в Таблице 16.8 .

Второй игрок выберет стратегию A, если предполагает, что первый выберет стратегию Z; в то же время стратегия B для него предпочтительнее в случае, если первый выберет Y.

Таблица 16.8.

Естественно предположить, что при отсутствии у всех игроков доминирующих стратегий, выбор каждого игрока зависит от ожиданий того, какими будут выборы других. Далее мы рассмотрим концепцию решения, основанную на этой идее.

16.2.4 Равновесие по Нэшу

Кроме ситуаций, рассмотренных в предыдущем разделе, бывают ситуации14 , которые естественно моделировать, исходя из следующих предположений:

игроки при принятии решений ориентируются на предполагаемые действия партнеров;

ожидания являются равновесными (совпадают с фактически выбранными партнерами действиями).

Если считать, что все игроки рациональны, так что каждый выбирает стратегию, дающую ему наибольший выигрыш при данных ожиданиях, то эти предположения приводят к концепции решения, называемой равновесием Нэша . В равновесии у каждого игрока нет оснований пересматривать свои ожидания.

Формально равновесие Нэша определяется следующим образом.

Определение 90:

Набор стратегий x X является равновесием Нэша15 , если

1) стратегия x i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков xe −i :

ui (xi , xe −i ) = max ui (xi , xe −i ) i = 1, . . . , n;

x iX i

14 Можно представить себе популяцию игроков типа А (скажем, кошки) и игроков типа Б (скажем, мышки). Игрок типа А при встрече с игроком типа Б имеет оправданные своим или чужим опытом ожидания относительно поведения партнера типа Б, и заранее на них ориентируется (и наоборот). Однако это не единственный тип ситуаций, в которых рассматриваемый подход является адекватным.

15 Американский математик Джон Нэш получил Нобелевскую премию по экономике в 1994 г. вместе с Дж. Харшаньи и Р. Зельтеном «за новаторский анализ равновесий в теории некооперативных игр». Концепция равновесия была предложена в следующих статьях: J. F. Nash: Equilibrium Points in N-Person Games,

Proceedings of the National Academy of Sciences of the United States of America 36 (1950): 48–49; J. F. Nash: NonCooperative Games, Annals of Mathematics 54 (1951): 286–295 (рус. пер. Дж. Нэш: Бескоалиционные игры, в кн. Матричные игры, Н. Н. Воробьев (ред.), М.: Физматгиз, 1961: 205–221).

Следует оговориться, что сам Нэш не вводил в определение ожиданий. Исходное определение Нэша совпадает с тем свойством, о котором говорится далее.

xe −i = x−i i = 1, . . . , n

Заметим, что при использовании равновесия Нэша для моделирования игровых ситуаций вопросы о том, знают ли игроки цели партнеров, знают ли они о рациональности партнеров, умеют ли их просчитывать, и т. д., отходят на второй план. Способ формирования ожиданий выносится за рамки анализа; здесь важно только то, что ожидания являются равновесными.

Но если при анализе равновесия Нэша не важно, знает ли игрок цели других игроков, то может возникнуть сомнение в правомерности рассмотрения концепции Нэша в контексте игр с полной информацией. Все дело в том, что термин «полная информация» в теории игр имеет довольно узкое значение. Он фактически подразумевает только полноту сведений о типах партнеров (термин «тип игрока», разъясняется в параграфе, посвященном байесовским играм).

Как легко видеть, приведенное определение равновесия Нэша эквивалентно следующему свойству, которое обычно и используется в качестве определения:

Набор стратегий x X является равновесием Нэша, если стратегия xi каждого игрока является наилучшим для него откликом на стратегии других игроков x−i :

ui (xi , x−i ) = max ui (xi , x−i ) i = 1, . . . , n

x iX i

Это свойство можно также записать в терминах так называемых функций (отображений) отклика.

Определение 91:

Отображение отклика i-го игрока,

Ri : X−i 7→Xi

сопоставляет каждому набору стратегий других игроков, x−i X−i , множество стратегий i-го игрока, каждая из которых является наилучшим откликом на x−i . Другими словами,

ui (yi , x−i ) = max ui (xi , x−i ) x−i X−i , yi Ri (x−i )x i X i

Введение отображений отклика позволяет записать определение равновесия Нэша более компактно: набор стратегий x X является равновесием Нэша, если

xi Ri (x−i ) i = 1, . . . , n

Если отклик каждого игрока однозначен (является функцией), то множество равновесий Нэша совпадает с множеством решений системы уравнений:

xi = Ri (x−i ) i = 1, . . . , n.

В Таблице 16.8 отображения отклика игроков изображены подчеркиванием выигрышей, соответствующих оптимальным действиям. Равновесие Нэша в данной игре - клетка (B, Y), поскольку выигрыши обоих игроков в ней подчеркнуты.

Проиллюстрируем использование функций отклика на примере игры, в которой игроки имеют континуум стратегий.

Игра 5. «Международная торговля»

Две страны одновременно выбирают уровень таможенных пошлин, τi . Объем торговли между странами16 , x, зависит от установленных пошлин как

x = 1 − τ1 − τ2

Цель каждой страны - максимизировать доходы ui = τi x.

Максимизируем выигрыш 1-й страны,

τ1 (1 − τ1 − τ2 )

по τ1 считая фиксированным уровень пошлины, установленный 2-й страной. Условие первого порядка имеет вид

1 − 2τ1 − τ2 = 0

Поскольку максимизируемая функция строго вогнута, то условие первого порядка соответствует глобальному максимуму.

Условие первого порядка для задачи максимизации выигрыша 2-й страны находится аналогично:

1 − τ1 − 2τ2 = 0

Решив систему из двух линейных уравнений, найдем равновесие Нэша:

τ1 = τ2 = 1/3

Оптимальный отклик 1-й страны на уровень таможенной пошлины, установленной 2-й страной описывается функцией

τ1 (τ2 ) =1 − τ 2

Аналогично, функция отклика 2-й страны имеет вид

τ2 (τ1 ) =1 − τ 1 2

Чтобы найти равновесие Нэша, требуется решить систему уравнений

τ1 (τ2 ) = τ1 ,

τ2 (τ) = τ .

Графически поиск равновесия Нэша показан не Рис. 16.3 . Точки, лежащие на кривых оптимального отклика τ1 (τ2 ) и τ2 (τ1 ), характеризуются тем, что в них касательные к кривым безразличия игроков параллельны соответствующей оси координат. Напомним, что кривой безразличия называют множество точек, в которых полезность рассматриваемого индивидуума одна и та же (ui (x) = const). Равновесие находится как точка пересечения кривых отклика.

Преимущество использования концепции равновесия Нэша состоит в том, что можно найти решение и в тех играх, в которых отбрасывание доминируемых стратегий не позволяет этого сделать. Однако сама концепция может показаться более спорной, поскольку опирается на сильные предположения о поведении игроков.

Связь между введенными концепциями решений описывается следующими утверждения-

16 В этой игре мы для упрощения не делаем различия между экспортом и импортом.

(τ2 )

равновесия

τ2 (τ1 )

Рис. 16.3. Равновесие Нэша в игре «Международная торговля»

Теорема 151:

Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из составляющих его стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Обратная теорема верна в случае единственности.

Теорема 152:

Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Доказательства этих двух утверждений даны в Приложении B (с. 641 ). Нам важно здесь, что концепция Нэша не входит в противоречие с идеями рациональности, заложенной в процедуре отбрасывания строго доминируемых стратегий.

По-видимому, естественно считать, что разумно определенное равновесие, не может быть отброшено при последовательном отбрасывании строго доминируемых стратегий. Первую из теорем можно рассматривать как подтверждение того, что концепция Нэша достаточно разумна. Отметим, что данный результат относится только к строгому доминированию. Можно привести пример равновесия Нэша с одной или несколькими слабо доминируемыми стратегиями (см. напр. Таблицу16.11 на с.652 ).

16.2.5 Равновесие Нэша в смешанных стратегиях

Нетрудно построить примеры игр, в которых равновесие Нэша отсутствует. Следующая игра представляет пример такой ситуации.

Игра 6. «Инспекция»

В этой игре первый игрок (проверяемый) поставлен перед выбором - платить или не платить подоходный налог. Второй - налоговой инспектор, решает, проверять или не проверять именно этого налогоплательщика. Если инспектор «ловит» недобросовестного налогоплательщика, то взимает в него штраф и получает поощрение по службе, более чем компенсирующее его издержки; в случае же проверки исправного налогоплательщика, инспектор, не получая поощрения, тем не менее несет издержки, связанные с проверкой. Матрица выигрышей представлена в Таблице 16.9 .

Таблица 16.9.

Инспектор

проверять

не проверять

нарушать

Проверяемый

не нарушать

Если инспектор уверен, что налогоплательщик выберет не платить налог, то инспектору выгодно его проверить. С другой стороны, если налогоплательщик уверен, что его проверят, то ему лучше заплатить налог. Аналогичным образом, если инспектор уверен, что налогоплательщик заплатит налог, то инспектору не выгодно его проверять, а если налогоплательщик уверен, что инспектор не станет его проверять, то он предпочтет не платить налог. Оптимальные отклики показаны в таблице подчеркиванием соответствующих выигрышей. Очевидно, что ни одна из клеток не может быть равновесием Нэша, поскольку ни в одной из клеток не подчеркнуты одновременно оба выигрыша.

В подобной игре каждый игрок заинтересован в том, чтобы его партнер не смог угадать, какую именно стратегию он выбрал. Этого можно достигнуть, внеся в выбор стратегии элемент неопределенности.

Те стратегии, которые мы рассматривали раньше, принято называть чистыми стратегиями . Чистые стратегии в статических играх по сути дела совпадают с действиями игроков. Но в некоторых играх естественно ввести в рассмотрение также смешанные стратегии. Подсмешанной стратегией понимают распределение вероятностей на чистых стратегиях. В частном случае, когда множество чистых стратегий каждого игрока конечно,

Xi = {x1 i , . . . , xn i i }

(соответствующая игра называется конечной ,), смешанная стратегия представляется вектором вероятностей соответствующих чистых стратегий:

µi = (µ1 i , . . . , µn i i )

Обозначим множество смешанных стратегий i-го игрока через Mi :

Mi = µi µk i > 0, k = 1, . . . , ni ; µ1 i + · · · + µn i i = 1

Как мы уже отмечали, стандартное предположение теории игр (как и экономической теории) состоит в том, что если выигрыш - случайная величина, то игроки предпочитают действия, которые приносят им наибольший ожидаемый выигрыш. Ожидаемый выигрыш i-го игрока, соответствующий набору смешанных стратегий всех игроков, (µ1 , . . . , µm ), вычисляется по формуле

Ожидание рассчитывается в предположении, что игроки выбирают стратегии независимо (в статистическом смысле).

Смешанные стратегии можно представить как результат рандомизации игроком своих действий, то есть как результат их случайного выбора. Например, чтобы выбирать каждую из двух возможных стратегий с одинаковой вероятностью, игрок может подбрасывать монету.

Эта интерпретация подразумевает, что выбор стратегии зависит от некоторого сигнала, который сам игрок может наблюдать, а его партнеры - нет17 . Например, игрок может выбирать стратегию в зависимости от своего настроения, если ему известно распределение вероятностей его настроений, или от того, с какой ноги он в этот день встал18 .

Определение 92:

Набор смешанных стратегий µ = (µ1 , . . . , µm ) являетсяравновесием Нэша в смешанных стратегиях , если

1) стратегия µ i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков µe −i :

U(µi , µe −i ) = max U(µi , µe −i ) i = 1, . . . , n;

µ iM i

2) ожидания совпадают с фактически выбираемыми стратегиями:

µe −i = µ−i i = 1, . . . , n.

Заметим, что равновесие Нэша в смешанных стратегиях является обычным равновесием Нэша в так называемом смешанном расширении игры, т. е. игре, чистые стратегии которой являются смешанными стратегиями исходной игры.

Найдем равновесие Нэша в смешанных стратегиях в Игре 16.2.5 .

Обозначим через µ вероятность того, что налогоплательщик не платит подоходный налог,

а через ν - вероятность того, что налоговой инспектор проверяет налогоплательщика.

В этих обозначениях ожидаемый выигрыш налогоплательщика равен

U1 (µ, ν) = µ[ν · (−1) + (1 − ν) · 1] + (1 − µ)[ν · 0 + (1 − ν) · 0] =

= µ(1 − 2ν),

а ожидаемый выигрыш инспектора равен

U2 (µ, ν) = ν[µ · 1 + (1 − µ) · (−1)] + (1 − µ)[µ · 0 + (1 − µ) · 0] = = ν(2µ − 1)

Если вероятность проверки мала (ν < 1/2), то налогоплательщику выгодно не платить налог, т. е. выбрать µ = 1. Если вероятность проверки велика, то налогоплательщику выгодно заплатить налог, т. е. выбрать µ = 0. Если же ν = 1/2, то налогоплательщику все равно, платить налог или нет, он может выбрать любую вероятность µ из интервала . Таким образом, отображение отклика налогоплательщика имеет вид:

Рассуждая аналогичным образом, найдем отклик налогового инспектора:

0, если µ < 1/2

ν(µ) = , если µ = 1/2

1, если µ > 1/2.

17 Если сигналы, наблюдаемые игроками, статистически зависимы, то это может помочь игрокам скоординировать свои действия. Это приводит к концепции коррелированного равновесия.

18 Впоследствии мы рассмотрим, как можно достигнуть эффекта рандомизации в рамках байесовского равновесия.

Графики отображений отклика обоих игроков представлены на Рис. 16.4 . По осям на этой диаграмме откладываются вероятности (ν и µ соответственно). Они имеют единственную общую точку (1/2, 1/2). Эта точка соответствует равновесию Нэша в смешанных стратегиях. В этом равновесии, как это всегда бывает в равновесиях с невырожденными смешанными стратегиями (то есть в таких равновесиях, в которых ни одна из стратегий не выбирается с вероятностью 1), каждый игрок рандомизирует стратегии, которые обеспечивают ему одинаковую ожидаемую полезность. Вероятности использования соответствующих чистых стратегий, выбранные игроком, определяются не структурой выигрышей данного игрока, а структурой выигрышей его партнера, что может вызвать известные трудности с интерпретацией данного решения.

Рис. 16.4. Отображения отклика в игре «Инспекция»

В отличие от равновесия в чистых стратегиях, равновесие в смешанных стратегиях в конечных играх существует всегда19 , что является следствием следующего общего утверждения.

Теорема 153:

Предположим, что в игре G = hI, {Xi }i I , {ui }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда в игре G существует равновесие Нэша (в чистых стратегиях).

Существование равновесия Нэша в смешанных стратегиях в играх с конечным числом чистых стратегий является следствием того, что равновесие в смешанных стратегиях является равновесием в чистых стратегиях в смешанном расширении игры.

Теорема 154 (Следствие (Теорема Нэша)):

Равновесие Нэша в смешанных стратегиях существует в любой конечной игре.

Заметим, что существование в игре равновесия в чистых стратегиях не исключает существования равновесия в невырожденных смешанных стратегиях.

Рассмотрим в Игре 16.2.1 «Выбор компьютера» случай, когда выгоды от совместимости значительны, т. е. a < c и b < c. В этом варианте игры два равновесия в чистых стратегиях: (IBM, IBM) и (Mac, Mac). Обозначим µ и ν вероятности выбора компьютера IBM PC первым и вторым игроком соответственно. Ожидаемый выигрыш 1-го игрока равен

U1 (µ, ν) = µ[ν · (a + c) + (1 − ν) · a] + (1 − µ)[ν · 0 + (1 − ν) · c] = = µ[ν · 2c − (c − a)] + (1 − ν)c

а его отклик имеет вид

µ(ν) = ,

Ожидаемый выигрыш 2-го игрока равен

если ν < (c − a)/2c

если ν = (c − a)/2c

если ν > (c − a)/2c.

U2 (µ, ν) = ν[µ · c + (1 − µ) · 0] + (1 − ν)[µ · b + (1 − µ) · (b + c)] =

= ν[µ · 2c − (b + c)] + b + (1 − µ)c

а его отклик имеет вид

ν(µ) = ,

если µ < (b + c)/2c

если µ = (b + c)/2c

если µ > (b + c)/2c.

Графики отображений отклика и точки, соответствующие трем равновесиям изображены на Рис. 16.5 . Как видно, в рассматриваемой игре кроме двух равновесий в чистых стратегиях имеется одно равновесие в невырожденных смешанных стратегиях. Соответствующие вероятности равны

µ = b + cи ν = c − a

Рис. 16.5. Случай, когда в игре «Выбор компьютера» существует три равновесия, одно из которых - равновесие в невырожденных смешанных стратегиях

Приложение A

Теорема повторяется, номер обновляется, ссылки на это приложение нет. Можно поменять местами A и B

Теорема 155:

Предположим, что в игре G = hI, {Xi }i I , {ui0 }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда существует равновесие Нэша.

Доказательство: Докажем, что отображение отклика, Ri (·), каждого игрока полунепрерывно сверху и его значение при каждом x−i X−i непусто и выпукло. Непустота следует из теоремы Вейерштрасса (непрерывная функция на компакте достигает максимума).

16.2. Статические игры с полной информацией

Докажем выпуклость. Пусть z0 , z00 Ri (x−i ). Очевидно, что u(z0 , x−i ) = u(z00 , x−i вогнутости по xi функции ui (·) следует, что при α

u(αz0 + (1 − α)z00 , x−i ) > αu(z0 , x−i ) + (1 − α)u(z00 , x−i ) =

U(z0 , x−i ) = u(z00 , x−i )

Поскольку функция ui (·) достигает максимума в точках z0 и z00 , то строгое неравенство

невозможно. Таким образом,

αz0 + (1 − α)z00 Ri (x−i )

Докажем теперь полунепрерывность сверху отображения Ri (·). Рассмотрим последовательность xn i сходящуюся к x¯i и последовательность xn −i сходящуюся к x¯−i , причем xn i Ri (xn −i ). Заметим, что в силу компактности множеств Xj x¯i Xi и x¯−i X−i . Нам нужно доказать, что x¯i Ri (x¯−i ). По определению отображения отклика

u(xn i , xn −i ) > u(xi , xn −i ) xi Xi , n

Из непрерывности функции ui (·) следует, что

u(¯xi , x¯−i ) > u(xi , x¯−i ) xi Xi

Тем самым, по введенному выше определению отображения отклика, x¯i Ri (x¯−i ). Опираясь на доказанные только что свойства отображения Ri (·) и на теорему Какутани,

докажем существование равновесия по Нэшу, то есть такого набора стратегий x X , для

которого выполнено

xi Ri (x−i ) i = 1, . . . , n

Определим отображение R(·) из X в X следующим образом:

R(x) = R1 (x−1 ) × · · · × Rn (x−n )

Отметим, что это отображение удовлетворяет тем же свойствам, что и каждое из отображений Ri (·), так как является их декартовым произведением.

Отображение R(·) и множество X удовлетворяют свойствам, которые необходимы для выполнения теоремы Какутани. Таким образом, существует неподвижная точка отображения

Очевидно, что точка x есть равновесие по Нэшу.

Приложение B

В этом приложении мы формально докажем утверждения о связи между равновесием Нэша и процедурой последовательного отбрасывания строго доминируемых стратегий.

Сначала определим формально процедуру последовательного отбрасывания строго доминируемых стратегий. Пусть исходная игра задана как

G = hI, {Xi }I , {ui }I i.

Определим последовательность игр {G[t] }t=0,1,2,... , каждая из которых получается из последующей игры отбрасыванием строго доминируемых стратегий. Игры отличаются друг от друга множествами допустимых стратегий:

G[t] = hI, {Xi [t] }I , {ui }I i

Процедура начинается с G= G.

Множество допустимых стратегий i-го игрока на шаге t + 1 рассматриваемой процедуры берется равным множеству не доминируемых строго стратегий i-го игрока в игре t-го шага. Множества не доминируемых строго стратегий будем обозначать через NDi (см. определение строго доминируемых стратегий (Определение89 , с.631 )). Формально

NDi = xi Xi yi Xi : ui (yi , x−i ) > ui (xi , x−i ) x−i X−i

Таким образом, можно записать шаг рассматриваемой процедуры следующим образом:

X i = ND i [t]

где NDi [t] - множество не доминируемых строго стратегий в игре G[t] .

Приведем теперь доказательства Теорем 151 и152 (с.636 ). Теорема151 утверждает следующее:

: Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Если использовать только что введенные обозначения, то Теорема 151 утверждает, что если x - равновесие Нэша в исходной игре G, то на любом шаге t выполнено

xi Xi [t] , i I, t = 1, 2, . . .

x X[t] , t = 1, 2, . . .

Доказательство (Доказательство Теоремы 151 ): Пусть есть такой шаг τ , что на нем должна быть отброшена стратегия xi некоторого игрока i I . Предполагается, что на предыдущих шагах ни одна из стратегий не была отброшена:

x X[t] , t = 1, . . . , τ.

По определению строгого доминирования существует другая стратегия игрока i, x0 i Xi [τ] , которая дает этому игроку в игре G[τ] более высокий выигрыш при любых выборах других

ui (x0 i , x−i ) > ui (xi , x−i ) x−i X− [τ i ]

В том числе, это соотношение должно быть выполнено для x−i , поскольку мы предположили, что стратегии x−i не были отброшены на предыдущих шагах процедуры (x−i X− [τ i ] ). Значит,

: Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Данная теорема относится к случаю, когда в процессе отбрасывания строго доминируемых

стратегий начиная с некоторого шага ¯ остается единственный набор стратегий, т. е. t x

Теорема утверждает, что x является единственным равновесием Нэша исходной игры.

Доказательство (Доказательство Теоремы 152 ): Поскольку, согласно доказанной только что теореме, ни одно из равновесий Нэша не может быть отброшено, нам остается только доказать, что указанный набор стратегий x является равновесием Нэша. Предположим, что это не так. Это означает, что существует стратегия x˜i некоторого игрока i, такая что

ui (xi , x−i ) < ui (˜xi , x−i )

По предположению, стратегия x˜i была отброшена на некотором шаге τ , поскольку она не совпадает с xi . Таким образом, существует некоторая строго доминирующая ее стратегия x0 i Xi [τ] , так что

ui (x0 i , x−i ) > ui (˜xi , x−i ) x−i X− [τ i ]

В том числе это неравенство выполнено при x−i = x−i :

ui (x0 i , x−i ) > ui (˜xi , x−i )

Стратегия x0 i не может совпадать со стратегией xi , поскольку в этом случае вышеприведенные неравенства противоречат друг другу. В свою очередь, из этого следует, что должна существовать стратегия x00 i , которая доминирует стратегию x0 i на некотором шаге τ0 > τ , т. е.

(x00

[τ0 ]

−i

В том числе

ui (x00 i , x−i ) > ui (x0 i , x−i )

Можно опять утверждать, что стратегия x00 i не может совпадать со стратегией xi , иначе вышеприведенные неравенства противоречили бы друг другу.

Продолжая эти рассуждения, мы получим последовательность шагов τ < τ0 < τ00 < . . .

и соответствующих допустимых стратегий x0 i , x00 i , x000 i , . . ., не совпадающих с xi . Это противо-

/ 667. Два игрока размещают некоторый объект на плоскости, то есть выбирают его координаты (x, y). Игрок 1 находится в точке (x 1 , y1 ), а игрок 2 - в точке (x2 , y2 ). Игрок 1 выбирает координату x, а игрок 2 - координату y. Каждый стремиться, чтобы объект находился как можно ближе к нему. Покажите, что в этой игре у каждого игрока есть строго доминирующая стратегия.

/ 668. Докажите, что если в некоторой игре у каждого из игроков существует строго доминирующая стратегия, то эти стратегии составляют единственное равновесие Нэша.

/ 669. Объясните, почему равновесие в доминирующих стратегиях должно быть также равновесием в смысле Нэша. Приведите пример игры, в которой существует равновесие в доминирующих стратегиях, и, кроме того, существуют равновесия Нэша, не совпадающие с равновесием в доминирующих стратегиях.

Найдите в следующих играх все равновесия Нэша.

/ 670. Игра 16.2.1 (с.625 ), выигрыши которой представлены в Таблице??////??

/ 671. «Орехи»

Два игрока делят между собой 4 ореха. Каждый делает свою заявку на орехи: xi = 1, 2 или 3. Если x1 + x2 6 4, то каждый получает сколько просил, в противном случае оба не получают ничего.

/ 672. Два преподавателя экономического факультета пишут учебник. Качество учебника (q) зависит от их усилий (e1 и e2 соответственно) в соответствии с функцией

q = 2(e1 + e2 ).

Целевая функция каждого имеет вид

ui = q − ei ,

т. е. качество минус усилия. Можно выбрать усилия на уровне 1, 2 или 3.

/ 673. «Третий лишний» Каждый из трех игроков выбирает одну из сторон монеты: «орёл» или «решка». Если

выборы игроков совпали, то каждому выдается по 1 рублю. Если выбор одного из игроков отличается от выбора двух других, то он выплачивает им по 1 рублю.

/ 674. Три игрока выбирают одну из трех альтернатив: A, B или C . Альтернатива выбирается голосованием большинством голосов. Каждый из игроков голосует за одну и только за одну альтернативу. Если ни одна из альтернатив не наберет большинство, то будет выбрана альтернатива A. Выигрыши игроков в зависимости от выбранной альтернативы следующие:

u1 (A) = 2, u2 (A) = 0, u3 (A) = 1,

u1 (B) = 1, u2 (B) = 2, u3 (B) = 0,

u1 (C) = 0, u2 (C) = 1, u3 (C) = 2.

/ 675. Формируются два избирательных блока, которые будут претендовать на места в законодательном собрании города N-ска. Каждый из блоков может выбрать одну из трех ориентаций: «левая» (L), «правая» (R) и «экологическая» (E). Каждая из ориентаций может привлечь 50, 30 и 20% избирателей соответственно. Известно, что если интересующая их ориентация не представлена на выборах, то избиратели из соответствующей группы не будут голосовать. Если блоки выберут разные ориентации, то каждый получит соответствующую долю голосов. Если блоки выберут одну и ту же ориентацию, то голоса соответствующей группы избирателей разделятся поровну между ними. Цель каждого блока - получить наибольшее количество голосов.

/ 676. Два игрока размещают точку на плоскости. Один игрок выбирает абсциссу, другой -

ординату. Их выигрыши заданы функциями:

а) ux (x, y) = −x2 + x(y + a) + y2 , uy (x, y) = −y2 + y(x + b) + x2 ,

б) ux (x, y) = −x2 − 2ax(y + 1) + y2 , uy (x, y) = −y2 + 2by(x + 1) + x2 , в) ux (x, y) = −x − y/x + 1/2y2 , uy (x, y) = −y − x/y + 1/2x2 ,

(a, b - коэффициенты).

/ 677. «Мороженщики на пляже»

Два мороженщика в жаркий день продают на пляже мороженое. Пляж можно представить как единичный отрезок. Мороженщики выбирают, в каком месте пляжа им находиться, т. е. выбирают координату xi . Покупатели равномерно рассредоточены по пляжу и покупают мороженое у ближайшего к ним продавца. Если x1 < x2 , то первый обслуживают (x1 + x2 )/2 долю пляжа, а второй - 1 − (x1 + x2 )/2. Если мороженщики расположатся в одной и той же точке (x1 = x2 ), покупатели поровну распределятся между ними. Каждый мороженщик стремиться обслуживать как можно большую долю пляжа.

/ 678. «Аукцион» Рассмотрите аукцион, подобный описанному в Игре 16.2.2 , при условии, что выигравший

аукцион игрок платит названную им цену.

/ 679. Проанализируйте Игру 16.2.1 «Выбор компьютера» (с.624 ) и найдите ответы на следующие вопросы:

а) При каких условиях на параметры a, b и c будет существовать равновесие в доминирующих стратегиях? Каким будет это равновесие?

б) При каких условиях на параметры будет равновесием Нэша исход, когда оба выбирают IBM? Когда это равновесие единственно? Может ли оно являться также равновесием в доминирующих стратегиях?

/ 680. Каждый из двух соседей по подъезду выбирает, будет он подметать подъезд раз в неделю или нет. Пусть каждый оценивает выгоду для себя от двойной чистоты в a > 0 денежных единиц, выгоду от одинарной чистоты - в b > 0 единиц, от неубранного подъезда - в 0, а свои затраты на личное участие в уборке - в c > 0. При каких соотношениях между a, b и c в игре сложатся равновесия вида: (0) никто не убирает, (1) один убирает, (2) оба убирают?

/ 681. Предположим, что в некоторой игре двух игроков, каждый из которых имеет 2 стратегии, существует единственное равновесие Нэша. Покажите, что в этой игре хотя бы у одного из игроков есть доминирующая стратегия.

/ 682. Каждый из двух игроков (i = 1, 2) имеет по 3 стратегии: a, b, c и x, y, z соответственно. Взяв свое имя как бесконечную последовательность символов типа иваниваниван. . . , задайте выигрыши первого игрока так: u1 (a, x) = «и», u1 (a, y) = «в», u1 (a, z) = «а», u1 (b, x) = «н», u1 (b, y) = «и», u1 (b, z) = «в», u1 (c, x) = «а», u1 (c, y) = «н», u1 (c, z) = «и». Подставьте вместо каждой буквы имени ее номер в алфавите, для чего воспользуйтесь Таблицей16.10 . Аналогично используя фамилию, задайте выигрыши второго игрока, u2 (·).

1) Есть ли в Вашей игре доминирующие и строго доминирующие стратегии? Если есть, то образуют ли они равновесие в доминирующих стратегиях?

2) Каким будет результат последовательного отбрасывания строго доминируемых страте-

3) Найдите равновесия Нэша этой игры.

Таблица 16.10.

/ 683. Составьте по имени, фамилии и отчеству матричную игру трех игроков, у каждого из которых по 2 стратегии. Ответьте на вопросы предыдущей задачи.

/ 684. Заполните пропущенные выигрыши в следующей таблице так, чтобы в получившейся игре. . .

(0) не было ни одного равновесия Нэша,

было одно равновесие Нэша,

было два равновесия Нэша,

было три равновесия Нэша,

(4) было четыре равновесия Нэша.

/ 685. 1) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть меньше, чем

min max ui (xi , x−i ).

x −iX −ix iX i

2) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть

меньше, чем

x iX ix −iX −i

February 10th, 2015

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги?

Существует единственный выигрышный ход.

Для начала по научному:

Равновесие Нэша (англ. Nash equilibrium ) названо в честь Джона Форбса Нэша - так в теории игр называется тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша.

Концепция равновесия Нэша (РН) впервые использована не Нэшем; Антуан Огюст Курно показал, как найти то, что мы называем равновесием Нэша, в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно . Однако Нэш первым показал в своей диссертации по некооперативным играм в 1950-м году, что подобные равновесия должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргенштерном (1947).

А теперь решение задачки, которая была представлена в начале поста:

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

А теперь немного об этом человеке:

Джон Нэш родился 13 июня 1928 г. в Блюфилде, штат Вирджиния, в строгой протестантской семье. Отец работал инженером в компании Appalachian Electric Power, мама до замужества успела 10 лет проработать школьной учительницей. В школе учился средне, а математику вообще не любил - в школе ее преподавали скучно. Когда Нэшу было 14, к нему в руки попала книга Эрика Т. Белла «Великие математики». «Прочитав эту книгу, я сумел сам, без посторонней помощи, доказать малую теорему Ферма» - пишет Нэш в своей автобиографии. Так его математический гений заявил о себе.

Учёба

Затем последовала учёба в Политехническом институте Карнеги (ныне частный Университет Карнеги-Меллона), где Нэш пробовал изучать химию, прослушал курс международной экономики и потом окончательно утвердился в решении заняться математикой. В 1948 году, окончив институт с двумя дипломами - бакалавра и магистра, - он поступил в Принстонский университет. Институтский преподаватель Нэша Ричард Даффин снабдил его одним из самых лаконичных рекомендательных писем. В нем была единственная строчка: «Этот человек - гений!»

Работы

В Принстоне Джон Нэш услышал о теории игр, в ту пору только представленной Джоном фон Нейманом и Оскаром Моргенштейном. Теория игр поразила его воображение, да так, что в 20 лет Джон Нэш сумел создать основы научного метода, сыгравшего огромную роль в развитии мировой экономики. В 1949 году 21-летний ученый написал диссертацию о теории игр. Сорок пять лет спустя он получил за эту работу Нобелевскую премию по экономике. Вклад Нэша описали так: зафундаментальный анализ равновесия в теории некооперативных игр.

Нейман и Моргенштейн занимались так называемыми играми с нулевой суммой, в которых победа одной стороны неизбежно означает поражение другой. В 1950 - 1953 гг. Нэш опубликовал четыре без преувеличения революционные работы, в которых представил глубокий анализ «игр с ненулевой суммой» - особого класса игр, в которых все участники или выигрывают, или терпят поражение. Примером такой игры могут стать переговоры об увеличении зарплаты между профсоюзом и руководством компании. Эта ситуация может завершиться либо длительной забастовкой, в которой пострадают обе стороны, либо достижением взаимовыгодного соглашения. Нэш сумел разглядеть новое лицо конкуренции, смоделировав ситуацию, впоследствии получившую название «равновесие по Нэшу» или «некооперативное равновесие», при которой обе стороны используют идеальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение только ухудшит их положение.

В 1951 году Джон Нэш стал работать в Массачусетском Технологическом институте (MIT) в Кэмбридже. Коллеги его особенно не любили, т. к. он был очень эгоистичен, однако относились к нему терпеливо, ведь его математические способности были блестящими. Там у Джона завязались близкие отношения с Элеанор Стиэр, которая вскоре уже ждала от него ребёнка. Так Нэш стал отцом, однако он отказался дать свое имя ребенку для записи в свидетельство о рождении, а также отказался оказывать какую-либо финансовую поддержку. В 1950-х гг. Нэш был знаменит. Он сотрудничал с корпорацией RAND, занимающейся аналитическими и стратегическими разработками, в которой работали ведущие американские ученые. Там, опять-таки благодаря своим исследованиям в области теории игр, Нэш стал одним из ведущих специалистов в области ведения «холодной войны». Кроме этого, работая в MIT Нэш написал ряд статей по вещественной алгебраической геометрии и теории римановых многообразий, высоко оценённые современниками.

Болезнь

Вскоре Джон Нэш встретил Алисию Лард и в 1957 г. они поженились. В июле 1958 г. журнал Fortune назвал Нэшавосходящей звездой Америки в «новой математике». Вскоре жена Нэша забеременела, но это совпало с болезнью Нэша - онзаболел шизофренией. В это время Джону было 30 лет, а Алисии - всего 26. В начале Алисия пыталась скрыть все происходящее от друзей и коллег, желая спасти карьеру Нэша. Однако спустя несколько месяцев безумного поведения, Алисия насильно поместила мужа в частную психиатрическую клинику в пригороде Бостона, McLean Hospital, где ему поставили диагноз «параноидальная шизофрения». После выписки он внезапно решил уехать в Европу. Алисия оставила новорожденного сына своей матери и последовала за мужем. Она вернула своего мужа в Америку. По возвращении они обосновались в Принстоне, где Алисия нашла работу. Но болезнь Нэша прогрессировала: он постоянно чего-то боялся, говорил о себе в третьем лице, писал бессмысленные почтовые карточки, звонил бывшим коллегам. Они терпеливо выслушивали его бесконечные рассуждения о нумерологии и состоянии политических дел в мире.

Ухудшение состояния мужа все сильнее угнетало Алисию. В 1959 г. он лишился работы. В январе 1961 года полностью подавленная Алисия, мать Джона и его сестра Марта приняли трудное решение: поместить Джона в Trenton State Hospital в Нью Джерси, где Джон прошел курс инсулиновой терапии - жесткое и рискованное лечение, 5 дней в неделю в течении полутора месяцев. После выписки коллеги Нэша из Принстона решили ему помочь, предложив ему работу в качестве исследователя, однако Джон опять отправился в Европу, но на этот раз один. Домой он отправлял только загадочные письма. В 1962 году, после 3 лет смятения, Алисия развелась с Джоном. При помощи матери она вырастила сына сама. Позднее оказалось, что у него тоже шизофрения.

Несмотря на развод с Алисией коллеги-математики продолжали помогать Нэшу - они дали ему работу в Университете и устроили встречу с психиатром, которой выписал анти-психотические лекарства. Состояние Нэша улучшилось, и он стал проводить время с Элеонорой и своим первым сыном Джоном Дэвидом. «Это было очень обнадёживающее время, - вспоминает сестра Джона Марта. - Это был достаточно долгий период. Но затем все стало меняться». Джон перестал принимать лекарства, опасаясь, что они могут оказать подавляющие влияние на мыслительную активность и симптомы шизофрении опять проявились.

В 1970 г. Алисия Нэш, будучи уверенной, что она совершила ошибку, предав мужа, приняла его вновь, и теперь уже как пансионера, это возможно и спасло его от состояния бездомности. В последующие годы Нэш продолжал ходить в Принстон, записывая на досках странные формулы. Студенты Принстона прозвали его «Фантом». Затем в 1980 гг. Нэшу стало заметно лучше - симптомы отступили и он стал более вовлеченным в окружающую жизнь. Болезнь, к удивлению врачей, стала отступать. Точнее, Нэш стал учиться не обращать на нее внимания и вновь занялся математикой. «Сейчас я мыслю вполне здраво, как всякий ученый, - пишет Нэш в своей автобиографии. - Не скажу, что это вызывает у меня радость, какую испытывает всякий выздоравливающий от физического недуга. Здравое мышление ограничивает представления человека о его связи с космосом».

Признание

В 1994, в возрасте 66 лет, Джон Нэш получил Нобелевскую Премию за свою работу по теории игр. Однако он был лишен возможности прочитать традиционную Нобелевскую лекцию в Стокгольмском университете, так как организаторы опасались за его состояние. Вместо этого был организован семинар (с его участием), на котором обсуждался его вклад в теорию игр. После этого Нэш был приглашен прочитать лекцию в университете Уппсалы, раз уж ему не предоставилось такой возможности в Стокгольме. По словам приглашавшего его профессора Математического института университета Уппсалы Кристера Кисельмана, лекция была посвящена космологии.

В 2001 году, через 38 лет после развода, Джон и Алисия вновь поженились. Нэш вернулся в свой офис в Принстоне, где продолжает познавать математику и познавать этот мир - мир, в котором вначале он был так успешен; мир, который заставил его пройти через очень сложное заболевание; и всё-таки этот мир принял его вновь.

«Игры разума»

В 1998 году американская журналистка (и профессор экономики Колумбийского университета Сильвия Назар) написала биографию Нэша под названием «A Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash» (Прекрасный ум: Жизнь гения математики и нобелевского лауреата Джона Нэша). Книга мгновенно стала бестселлером.

В 2001 году под руководством Рона Ховарда по мотивам книги был снят фильм «A Beautiful Mind», в русском прокате «Игры разума». Фильм получил четыре «Оскара» (за лучшие адаптированный сценарий, режиссуру, актрису второго плана и, наконец, лучший фильм), награду «Золотой глобус» и был отмечен несколькими призами Bafta (британская премия за кинематографические достижения).

Как видим, фильм практически правда. Конечно, с некоторыми «литературными» искажениями.

  • На роль режиссёра фильма был предложен Роберт Редфорд, но его не устроило расписание съёмок.
  • На роль Джона Нэша пробовался Том Круз, а на роль Алисии - Сальма Хайек. Любопытно, что она родилась в том же городке Эль Сальвадор, что и её несостоявшаяся героиня.
  • Когда Нэш впервые видит Паркера, он обращается к нему как к «большому брату» (намёк на роман Оруэлла «1984»). Ещё одна отсылка к Оруэллу происходит позднее, когда мы видим номер на двери кабинета Нэша - 101.
  • В роли рукописи, которую молодой Джон Нэш показывает своему куратору, профессору Хелинджеру, выступает подлинная копия статьи, напечатанной в журнале Econometrica под заголовком «Задача совершения сделки».
  • Сценарист фильма Акива Голдсман имел немалый опыт общения с душевнобольными людьми: в свою бытность врачом он лично разрабатывал методики восстановления душевного здоровья детей и взрослых.
  • Куратором фильма по математической части стал профессор Барнардского колледжа Дэйв Байер - именно его рукойРасселл Кроу «выводит» на доске мудрёные формулы.
  • «Мудрёные формулы» при внимательном рассмотрении представляют собой просто бессмысленный набор греческих букв, стрелок и математических знаков.
  • В отличие от своего экранного двойника, отличавшегося редкой преданностью своей «половинке», реальный Джон Нэш в своей жизни несколько раз был женат, а в двадцать с небольшим лет усыновил внебрачного ребенка.
  • В части фильма, относящейся к периоду вручения Нобелевской Премии (1994 г.), Нэш говорит о том, что якобы принимает антипсихотики нового типа, однако в действительности Джон Нэш отказался от них еще в 1970 году, и его ремиссия не была связана с приемом нейролептиков.

Где же сегодня применяются открытия Нэша?


Пережив бум в семидесятых-восьмидесятых, теория игр заняла прочные позиции в некоторых отраслях социального знания. Эксперименты, в которых команда Нэша в свое время фиксировала особенности поведения игроков, в начале пятидесятых были расценены как провал. Сегодня они легли в основание «экспериментальной экономики». «Равновесие Нэша» активно используется в анализе олигополий: поведении небольшого количества конкурентов в отдельном секторе рынка.

Кроме того, на Западе теория игр активно используется при выдаче лицензий на вещание или связь: выдающий орган математически высчитывает наиболее оптимальный вариант распределения частот.

Точно так же успешный аукционист сам определяет, какую информацию о лотах можно предоставлять конкретным покупателям, чтобы получить оптимальный доход. С теорией игр успешно работают в юриспруденции, социальной психологии, спорте и политике. Для последней характерным примером существования «равновесия Нэша» является институционализация понятия «оппозиция».

Однако теория игр нашла свое применение не только в социальных науках. Современная эволюционная теория была бы невозможна без представления о «равновесии Нэша», которое математически объясняет, почему волки никогда не съедают всех зайцев (потому что иначе они через поколение умрут от голода) и почему животные с дефектами делают свой вклад в генофонд своего вида (потому что в таком случае вид может приобрести новые полезные характеристики).

Сейчас от Нэша не ждут грандиозных открытий. Кажется, это уже неважно, поскольку он успел сделать две самые важные вещи в жизни: стал признанным гением в молодости и победил неизлечимую болезнь в старости.

И еще немного научных теорий: вот вам например , а вот . Вспомним еще про , и . А ведь есть еще и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, которые принимают фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы стремятся сговориться, тогда как на других агрессивно конкурируют; использующие фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия спроса или издержек или когда новые конкуренты вторгаются на рынок и т.

Первыми провели исследование в области теории игр Дж.-Ф. Нейман и О. Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944). Они распространили математические категории этой теории на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирование в игре (на рийку), коалиционных соглашений и тому подобное.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - "игра с нулевой суммой", предусматривающий такой выигрыш, который состоит исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общая сумма пользы и потерь всегда равна нулю. Вторая категория - "игра с плюсовой суммой", когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. Иногда он образуется за счет наличия "выходного" (термин из карточной игры в бридж, который означает одного из игроков, который, делая ставку, не участвует в игре), совсем пассивного и часто является служащим объектом эксплуатации. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, "стремится максимально повысить функцию, переменные которой ним не контролируются". Если все игроки являются умелыми, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои намерения, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе. Многое зависит и от "контрхитрости".

Большое значение во время игры имеет рациональное поведение игрока, т.е. продуманные выбор и осуществление оптимальной стратегии. Важный вклад в разработку формализованного (в виде моделей) описания конфликтных ситуаций, особенно в определении "формулы равновесия", т.е. устойчивости решений противников в игре, внес американский ученый Дж.-Ф. Нэш.

Нэш Джон Форбс родился в 1928 г.. (Г.. Влуефилд, США). Учился в университете Карнеги-Меллона по специальности инженера-химика, освоил курс "международная экономика". Получил диплом бакалавра и одновременно магистра математики.

В 1950 г.. В ИИриястонському университете защитил докторскую диссертацию на тему "некооперативных игры". Начиная с 1951г. И на протяжении почти восьми лет Нэш работал преподавателем Массачусетского технологического института, проводя одновременно активную научно-исследовательскую деятельность.

С весны 1959 ученый заболел и потерял работоспособность. В 70-е годы он смог вернуться к своим математических увлечений, однако производить научные результаты ему было трудно. Нобелевский комитет в 1994 фактически наградил труд, написанная в 1949

Член Национальной академии наук США, Бконометричного общества и Американской академии искусств и академии наук.

Досконально изучив различные игры, создав серию новых математических игр и наблюдая за действиями участников в различных игровых ситуациях, Нэш пытался глубже понять, как функционирует рынок, как компании принимают связаны с риском решения, почему покупатели действуют именно определенным образом. В экономике, как и в игре, руководители фирм должны учитывать не только последний, но и предыдущие шаги конкурентов, а также обстановку на всем экономическом (игровом, например, шахматном) поле и многие другие важные факторы.

Субъекты экономической жизни - активно действующие его участники, которые на рынке в условиях конкуренции идут на риск, и он должен быть оправдан. Поэтому каждый из них, как игрок, должен иметь свою стратегию. Именно это имел в виду Нэш, когда разрабатывал метод, который впоследствии назвали его именем (равновесие Нэша).

Свое понимание стратегии как основного понятия теории игр Дж.-Ф. Нэш разъясняет на основе "игры с нулевой суммой" (он называет это "симметричной игрой"), когда каждый участник имеет определенное число стратегий. Выигрыш каждого игрока зависит от того, какие стратегии выбрал и он, и его противник. На основании этого строится матрица для нахождения оптимальной стратегии, которая за многократного повторения игры обеспечивает этому игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш). Поскольку игроку неизвестно, какую стратегию выберет противник, ему самому лучше (рационально) выбрать стратегию, которая рассчитана на худшую для него поведение противнике (принцип так называемого "гарантированного результата"). Действуя осторожно и считая противника сильным конкурентом, наш игрок выберет для каждой своей стратегии минимально возможный выигрыш. Затем из всех минимально выигрышных стратегий он выберет такую, которая обеспечит максимальный из всех минимальных выигрыш - максимин.

Но и противник, вероятно, подумает аналогично. Он найдет для себя наибольшие проигрыши во всех стратегиях игрока, а затем из этих максимальных проигрышей выберет минимальный - минимакс. В случае равенства максимина мини Максу решения игроков будут устойчивыми, а игра будет иметь равновесие. Устойчивость (равновесие) решений (стратегий) состоит в том, что отходить от выбранных стратегий будет невыгодно для обоих участников игры. В случае, когда максимин не равна минимакса, решения (стратегии) обоих игроков, если они сколько-нибудь угадали выбор стратегии противника, оказываются неустойчивыми, невривно-важен.

Общее краткое определение равновесия Нэша - результат, в котором стратегия каждого из игроков является лучшей среди других, принятых остальными участниками игры стратегий. Это определение основывается на том, что ни один из игроков изменением собственной роли не может достичь наибольшей пользы (максимизации функции полезности), если остальные участники твердо придерживаются своей линии поведения.

Свою формулу равновесия Дж.-Ф. Нэш многократно усилил, включив в нее как незаменимый фактор для выработки стратегий показатель оптимального объема информации. Этот показатель оптимальности он вывел из анализа ситуаций (1) с полным информированием игрока о своих противников и (2) с неполным информированием о них. Переведя этот постулат с математического языка на язык экономической, Нэш ввел неуправляемые переменные рыночных отношений как важный информационный элемент знания условий внешней среды. После этого равновесие Нэша стала методом, используется практически во всех отраслях экономической науки для лучшего понимания сложных взаимосвязей, - отметил в октябре 1994 во время объявления новых лауреатов Нобелевской премии по экономике А. Линдбек, член Шведской королевской академии и председатель Нобелевского комитета по экономике.

Применение равновесия Нэша стало важным шагом в микроэкономике. ее использование способствовало углубленному пониманию развития и функционирования рынков, обоснованию стратегических решений, принимаемых менеджерами различных фирм. Равновесием Нэша можно пользоваться при изучении процесса ведения политических переговоров и экономического поведения, в том числе на олигополистических рынках.

По пионерной анализ равновесия в некооперативных играх Нобелевская премия по экономике 1994 года было присуждена Дж.-Ф. Нэш в, Р. Селтену и Дж. Харшани. Начиная с классического труда Дж. Неймана и О. Моргенштер-на "Теория игр и экономическое поведение", неотъемлемой частью экономического анализа стало исследование стратегии взаимодействия экономических субъектов в условиях, когда для выработки собственной линии поведения необходимо учитывать действия другого суб " объекта (как это происходит, в частности, в шахматах, преферансе и других играх). Эти трое Нобелевских лауреатов внесли большой вклад в ответвление теории игр - теорию некооперативных игр (то есть игр, когда достигнута договоренность между участниками). Принципиальным моментом этой теории является концепция равновесия, используется для предсказания результатов взаимодействия.

Равновесие Нэша стала фундаментальным понятием теории игр.

Анализ дискретного выбора

К последней четверти ХХ в. доминировало мнение, что основную роль в поведении потребителей играют здравый смысл и расчет. Именно с учетом прежде всего здравого смысла потребителей сформулированы либеральные экономические теории. Экономисты этого научного направления считают, что рынок как система отношений между экономическими субъектами способен саморегулироваться и устанавливать справедливые цены на товары и услуги на основе здравого смысла.

Хотя либеральная экономическая школа дала миру больше научных достижений, чем конкурентная консервативна, однако ее теории имеют ограниченное применение, что признают и ее сторонники. Например, монетарнсты (они же либералы) пока не сумели аргументированно объяснить поведение инвесторов на международных финансовых рынках и огромные колебания цен на мировые сырьевые ресурсы.

Либеральный рыночный подход оказался слишком упрощенным для надежного прогнозирования потребительского спроса на услуги и товары в условиях, когда потребители имеют огромный выбор подобных товаров и при этом не ограничены в объемах закупок, поскольку сейчас в развитых странах чрезвычайно распространен потребительский кредит. Кроме того, либеральная теория не может объяснить, например, покупку американской семьей (или английском семьей) американского (или английского) автомобиля, в то время как корейский стоит дешевле. То есть эта теория не принимает во внимание национальные и другие особенности поведения потребителей, которые с точки зрения здравого смысла трудно объяснить.

Поэтому в последнее время ученые-екоярмисты все чаще говорят о появлении новой экономической теории, сложившейся непосредственно на основе данных о поведении потребителей, которую надо изучать с помощью статистических методов. Эта теория предлагает описание способа измерения полезности. Несмотря на то, что подобные оценки носят субъективный характер, именно субъективность определяет их ценность для реализации экономической политики. Многие экономисты даже прогнозируют, что именно теория поведения потребителей (известный автор - Д. - Л. Мак-Федден) будет в XXI в. основой для определения экономической и политической стратегии развитых государств.

Мак-Федден ДаниельЛитл родился в 1937г. (г.. Ралейг, штатГОвн.Каролина, США). Учился и работал в Миннесотского университете. В 1962 г.. Защитил докторскую диссертацию, работал ассистентом профессора экономики в Питсбургском университете, затем профессором экономики в Калифорнийском университете, где с 1991 г.. Руководит эконометрической лабораторией.

Опубликовал в соавторстве такие труды: "Очерки об экономическом поведении в условиях нестабильности" (1974), "Спрос на городское передвижения: поведенческий анализ" (1976), "Экономика производства: двойной подход к теории и практики" (1978), "Структурный анализ дискретных данных с економетричяимы приложениями "(1981)," Мик-роекономичне моделирования и численный анализ: исследование спроса в коммунальном хозяйстве "(1984)," Справочник по эконометрики "(т.4,1994), а также много научных статей.

В течение 1983-1984 гг. Был вице-президентом, а в 1985 г.. - Президентом Эконометрического общества. У1994 г.. Избирался вице-президентом Американской экономической ассоциации. Член Национальной академии наук США, Американских эконометрического общества и академий искусств и наук, Американская экономическая ассоциация наградила его медалью Дж.-Б. Кларка, Эконометрическое общество - медалью Р. Фриша.

Известно, что довольно часто микроданные отражают дискретные выборы - выборы среди конечного множества альтернативных решений. В экономической теории традиционный анализ спроса предусматривал, что индивидуальный выбор должен быть представлен непрерывной переменной, но такая трактовка не соответствует изучению поведения дискретного выбора. Предыдущими достижениями многих ученых эмпирические исследования таких выборов не были обоснованными в экономической теории.

Методология анализа дискретного выбора Д.-л. Мак-Феддена коренится в микроэкономической теории, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности - это способы описания потребительского выбора: если выбран набор услуг X при том, что набор услуг В доступен, то X должен иметь большую полезность, чем В. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение. Очевидно, что невозможно исследовать весь комплекс фактов влияния на выбор индивида, но анализ динамики изменений среди личностей с примерно одинаковыми характеристиками позволяет сделать достаточно объективные выводы.

Д.-л. Мак-Федден в сотрудничестве с Т, Домеником изучил поведение потребителей относительно регулярных транспортных поиздок1. В большинстве крупных городов у лиц, осуществляющих регулярные транспортные поездки, есть выбор: пользоваться общественным транспортом или ездить на работу автомобилем. Каждую из этих альтернатив можно рассматривать как набор различных характеристик: время нахождения в пути, время ожидания, имеющихся расходов, комфорта, удобства и тому подобное. Таким образом, можно обозначить продолжительность времени нахождения в пути для каждого рода поездки через х {, продолжительность времени ожидания для каждого вида поездки через х 2 и т. Д.

Если (хх, х2, Хя) представляет значение п различных характеристик автомобильных поездок, а (y1, y2 ... .. y п) - значения характеристик поездок на автобусе, то можно рассмотреть модель, в которой потребитель принимает решение о том, поехать ему автомобилем или автобусом, исходя из предпочтения одного набора указанных характеристик другому. Конкретнее можно предположить, что преимущества среднего потребителя в отношении указанных характеристик могут быть представлены функцией полезности вида:

где коэффициенты b и, b 2 i т. Д - неизвестные параметры. Любое монотонное преобразование этой функции полезности может описать потребительский выбор, однако с точки зрения статистики работать с линейной функцией значительно легче.

Предположим, что существует группа похожих по характеристикам потребителей, которые выбирают, поехать автомобилем или автобусом, основываясь при этом на конкретных данных о продолжительности времени поездок, о расходах и другие характеристики поездок, с которыми они сталкиваются. В статистике есть технические приемы, которые можно использовать для поиска значений коэффициентов Д, при и - 1, п, наиболее подходящие для исследовательской структуры выбора, осуществленного данной множественностью потребителей. Эти технические приемы статистики позволяют вывести оценочную функцию полезности для различных способов транспортного передвижения.

Мак-Федден и Доменик предложили функцию полезности вида:

где ТW - общее время ходьбы до автобуса или автомобиля или от него; ТТ - общее время поездки в минутах; С - общая стоимость поездки в долларах.

С помощью оценочной функции полезности удалось правильно описать выбор между автомобильным и автобусным транспортом для 93% домохозяйств взятой авторами выборки. Коэффициенты при переменных в изложенном уравнении показывают предельную полезность каждой такой характеристики. Отношение одного коэффициента к другому показывает предельную норму замещения одной характеристики другой. Например, отношение предельной полезности времени ходьбы пешком к предельной полезности общей продолжительности поездки указывает не то, что рядовой потребитель считает время ходьбы пешком примерно в 3 раза медленнее, чем время поездки. То есть потребитель был бы готов затратить 3 дополнительных минуты на поездку, чтобы сэкономить 1 минуту ходьбы пешком. Аналогично отношение стоимости поездки в общей продолжительности поездки указывает на выбор рядового потребителя относительно этих двух переменных. В исследовании рядовой пассажир оценивал минуту времени поездки на транспорте в 0,0411 х х 2,24 = 0,0183 долл. за минуту, что составляет 1,10 долл. в час. (Для сравнения - часовая зарплата среднего пассажира в 1967 г.. Составляла в сена 2,85 долл. В час.)

Такие оценочные функции полезности могут быть ценными для определения того, следует осуществлять какие-то изменения в системе общественного транспорта. Например, в приведенной выше функции полезности одним из важных факторов, объясняющих, чем руководствуются потребители в своем выборе, является продолжительность поездки. Городское управление транспортом могло бы при небольших затратах увеличить количество автобусов, чтобы сократить эту общую продолжительность поездки, но необходимо выяснить дополнительное количество пассажиров оправдает рост затрат.

Оперируя функцией полезности и выборке потребителей, можно сделать прогноз относительно того, какие потребители захотят совершать поездки автомобилем, а какие предпочтут автобуса. Это позволит получить некоторое представление о том, будет ли выручка достаточной для покрытия дополнительных расходов. Кроме того, можно использовать предельную норму замещения для формирования представления об оценке каждым потребителем сокращения времени поездок. По результатам исследования Мак-Феддена и Доменика рядовой пассажир в 1967 оценивал время поездки по ставке 1,10 долл. в час, он готов был заплатить 37 центов, чтобы сократить время поездки на 20 минут. Это число показывает степень выигрыша в долларах от более своевременного предоставления автобусных услуг. Наличие количественной меры выигрыша, безусловно, способствует принятию рациональных решений в сфере транспортной политики.

Еще один весомый вклад Мак-Феддена - это развитие в 1974 так называемого анализа условного логит. Модель предполагает, что каждый человек в жизни находится перед рядом альтернатив. Обозначим как X характеристики, связанные с каждой альтернативой, и как 2 характеристики лиц, исследователь может наблюдать с помощью имеющихся данных. Например, для изучения выбора способа путешествий, где альтернативой может быть автомобиль, автобус или метро, X может включать информацию относительно времени и расходов, тогда как X мог бы включать данные относительно возраста, дохода и образования. Но различия между индивидами и альтернативы папке, как между Х \%, хотя они незаметны исследователю, но именно они определяют индивидуальный максимально полезный выбор. Такие характеристики представлены случайными векторами ошибок. Мак-Федден предположил, что эти случайные ошибки имеют определенную статистическую дистрибуцию (распределение) среди населения, назвав ее дистрибуцией экстремального значения. В этих условиях (плюс некоторые технические предсказания) он продемонстрировал, что вероятность того, что лицо и выберет альтернативу /, может быть записана в виде многочленов логит-модели:

где e - основание натурального логарифма; b и b - параметры (векторы). В своей базе данных исследователь может наблюдать переменные X и Z фактически так, как индивид выбирает альтернативу. В результате ученый способен оценить параметры р и <5, использовав известные статистические методы. Мак-Федденивське дифференцировки логит-модели осталось новацией и признается фундаментальным достижением.

Модели обычно используются в исследованиях спроса на городские перевозки. Они также могут применяться на транспорте, когда планируется изучить эффективность политических мер, а также социальных реформ или изменений окружающей среды. Например * эти модели могут объяснить, как изменения в цене товаров улучшают их доступность, влияют они на демографическую ситуацию, на объемы путешествия, используя альтернативные способы передвижения. Модели также приемлемые для многих других сфер, в частности, в исследованиях выбора жилого помещения, места жительства или образования. Мак-Федден использовал разработанные методы для анализа многих социальных проблем, таких как спрос на бытовую энергию, телефонные услуги и обеспечение жильем людей пожилого возраста и тому подобное.

В результате своих исследований ученый пришел к выводу, что условные логит-модели имеют определенную особенность относительно вероятности выбора между двумя альтернативами, например путешествия автобусом или поездом, независимыми от цены других вариантов передвижения. Эта особенность, названная независимостью несвязанных альтернатив (ННА), нереалистично для статистического потребления. Д.-л. Мак-Федден изобрел не только статистические тесты для установления соответствия ННА, но и предложил общие модели, названные заключенным логит-моделями, которые предусматривают, что выборы индивидов могут быть сделаны в определенной последовательности. Например, при исследовании решений, касающихся места жительства и типа жилья, принято, что гражданин сначала выбирает микрорайон, а затем - тип жилого помещения.

Даже с этими обобщениями модели весьма чувствительны к определенным предсказаний относительно дистрибуции ненаблюдаемых характеристик среди населения. В течение последнего десятилетия Д.-л. Мак-Федден разработал имитационные модели (методы моделируемых моментов) для статистической оценки дискретного выбора моделей, которые допускают гораздо более основных предположений. Мощные компьютеры расширили практическую приспособленность этих численных методов. В результате дискретные выборы индивидов теперь могут быть описаны более реалистично, а их решения - предусмотрены точнее. На основе своей новой теории Мак-Федден разработал микроеконометрични модели, которые могут использоваться, например, для предсказания намерений той части населения, которая будет выбирать различные альтернативы. За развитие методики формального обработки индивидуальных статистических и экономических данных Мак-Феддена отмечено Нобелевской премией.

Д.-л. Мак-Федден в 60-е годы также изобрел эконометрические методы оценки производственной технологии и исследовал факторы, косвенно влияют на потребность фирмы в капитале и в рабочей силе. В течение 90-х лет талантливый ученый научно развил экономику природопользования, обогатил методическую литературу по оценке стоимости природных богатств, в частности исследовал потери общественного богатства вследствие нанесенных в 1989 г.. Убытков окружающей среде нефтяным пятном, движущейся от пострадавшего в аварии танкера "Exxon Valdez * вдоль побережья Аляски.

Лейтмотивом исследований профессора Д.-л. Мак-Феддена е попытки объединить экономическую теорию, статистические и эмпирические методы для решения с их помощью социальных проблем. Его научные разработки также помогают социологам и политикам оценить выбор голосующих, исходя из змьн в их доходах и др.

Мак-Федден первым предложил методологию анализа дискретного выбора, согласно которой каждый индивид выбирает определенную альтернативу, которая максимизирует его полезность. Функции полезности представляют собой способы описания потребительского выбора. Изучая выбор, сделанный потребителями, можно вывести оценочную функцию полезности, адекватно описывала бы их поведение.

Проявляет себя в реальности, дабы показать, что это понятие является не просто абстрактным термином, а обобщением реально существующей закономерности. Однако, несмотря на наглядность примера, на основании только его одного может показаться, что мы наткнулись на какой-то вырожденный случай. Поэтому имеет смысл рассмотреть и более общее описание данного правила.

Многие читатели, возможно, знакомы с равновесием Нэша по одному весьма распространённому его частному случаю - так называемой «дилемме заключённого». Его суть примерно в следующем.

В тюрьме находятся два заключённых, которых взяли с поличным по отдельности, но ещё подозревают в более тяжких преступлениях. Если участие докажут, то срок заключённых возрастёт до десяти лет. Сейчас же они отсиживают по году каждый. Следствие предлагает каждому из них пойти на сделку и дать показания против второго. В этом случае первому срок скостят до полугода, а второй сядет на десять. Однако заключённые понимают, что если они оговорят друг друга, то вряд ли их обоих пощадят - скорее добавят каждому ещё лет по пять.

Расклад можно отобразить при помощи следующей таблицы.

Легко видеть, что «зелёные» варианты (1, 2) и (2, 1) являются симметричными, в двух же других положение заключённых будет идентичным. Поэтому можно рассмотреть логику ситуации с точки зрения только одного из заключённых - для второго она будет такой же.

Заключённый, разумеется, хочет наименьшего срока для себя. Но если он будет хранить молчание, то, возможно, его коллега даст против него показания, чем повысит ему срок до десяти лет. Если бы не обещанное снижение срока, то можно было бы тешить себя мыслью «а зачем мне это?», но соблазн снизить срок слишком вели́к. Кроме того, второй заключённый, как понимает первый, будет подозревать его, первого, в том, что он даст показания против второго и повысит тем самым ему срок.

«Обидно будет оказаться крайним и загреметь на десять лет», - думает первый. Но «и второй наверняка думает так же, и так же подозревает меня, - понимает он, - а потому шансов, что коллега меня не заложит, очень мало. Выходит, надо давать показания: если второй каким-то чудом промолчит, то будет полгода, проговорится - пять. Ну хоть не десять, которые я неизбежно получу из-за разоткровенничавшегося со следствием моего подельника!».

«Оранжевый» вариант (1, 1) является удобоваримым для обоих и в каком-то смысле это оптимум в данной ситуации. Однако у каждого есть ещё лучший вариант - соответствующий «зелёный» (1, 2) или (2, 1). В результате чего на деле будет реализован «красный» вариант (2, 2).

Можно сказать, что для каждого из заключённых он не так плох: всего пять лет против десяти в «зелёном» варианте в пользу подельника. Однако представим, что в «красном» варианте обоим дадут по десять. Логика в данном случае чуть-чуть поменяется: «если я его сдам, то хотя бы есть шанс отвертеться от десяти лет, а если промолчу - шансов нет, он меня наверняка заложит по тем же соображениям». Однако тут система подталкивает заключённых выбрать наихудший вариант из возможных. Действуя, что характерно, строго ради своей выгоды.

Рассмотрим теперь ещё одну ситуацию. Есть две фирмы - А и Б. Каждая из них может воспользоваться стратегией - Икс или Игрек. Однако на результаты оказывает влияние не только стратегия, выбранная самой фирмой, но и стратегия второй фирмы тоже. Выигрыш или проигрыш каждой из фирм мы представим в виде следующей таблицы.

Я специально для повышения накала страстей подобрал числа так, чтобы убыточное для обеих фирм состояние лишь незначительно отличалось бы от «соседних» с ним: тем удивительнее, что будет реализовано именно оно. Фирмы, действуя строго в своих интересах, с большой вероятностью захотят получить тысячу рублей вместо ста и тем самым не получат ничего, а наоборот, даже утратят. Переход же одной из фирм на стратегию Икс ещё сильнее ухудшит её положение - другая фирма будет обогащаться, а вторая терять ещё больше, хотя и незначительно больше.

Запишем вышеприведённые матрицы в более общем виде, абстрагировавшись от «фирм», «заключённых», «сроков» и «рублей». Положим, что у нас просто есть два игрока А и Б, играющие в некоторую игру, где на каждом ходе можно совершить один из двух ходов - Икс или Игрек. Выигрышем являются просто некие «баллы», наибольшее число которых каждый игрок и стремится набрать.

А делает ход Икс А делает ход Игрек
Б делает ход Икс А: a 0
Б: b 0
А: a 1 > a 0
Б: b 1 < b 3
Б делает ход Игрек А: a 2 < a 3
Б: b 2 > b 0
А: b 3
Б: a 3

Правила игры, представленные данной матрицей, будут «подталкивать» игроков к реализации «красного» варианта (2, 2), даже если выигрыши игроков в этом случае существенно меньше, чем во всех остальных вариантах. Правда, в зависимости от соотношения выигрышей (которые могут быть в том числе отрицательными - то есть проигрышами), обозначенных буквами «a» и «b» с индексами, частота реализации каждого из вариантов будет разной.

В частности, на выбор может влиять среднее арифметическое выигрышей при выборе каждой из стратегий, а также предположительная вероятность, с которой игрок сделает тот или иной ход (которая, кстати, может быть аппроксимирована частотой ходов, сделанных в предыдущих раундах). Так, в простейшем случае игрок А для оценки хода Икс складывает a 0 и a 2 и делит результат на два, полагая выбор хода со стороны Б равновероятным. То же самое он проделывает для хода Игрек - складывает a 1 с a 3 , после чего делит результат на два - и сравнивает результаты. В более сложном случае игрок считает сумму a 0 *p x + a 2 *p y , где p x и p y - вероятности ходов Икс и Игрек, сделанных игроком Б. Результат сравнивается с a 1 *p x + a 3 *p y .

Можно было бы, конечно, снова поделить результат на два, но поскольку деление на два имеет место быть для обоих вариантов хода, для сравнения величин эта операция необязательна, как, впрочем, и в случае «равновероятных ходов».

Также игрок может ориентироваться на сами величины. Например, если один из ходов означает вероятный проигрыш - особенно крупный, такой, какой игрок не может себе позволить, - игрок, не исключено, будет выбирать другой ход, даже если предположительный выигрыш при другом ходе в среднем ниже, но зато в обоих случаях положительный.

Наконец, надо помнить, что люди часто, скажем так, «помнят о другом игроке». Если второй игрок - конкурент или даже враг, то, возможно, будет иметь место тенденция выбирать такой ход, который навредит другому игроку, даже если первый игрок из-за этого выиграет мало, и даже, не исключено, проиграет. Если второй игрок - друг, то чаще будет выбираться ход, позволяющий чуть-чуть выиграть и ему тоже - в том случае, если «игра» - это не заранее заявленное соревнование, а какой-то процесс из реальной жизни. Возможности мести и поблажек, разумеется, зависят от соотношений в матрице - при некоторых из них скорее забудут, что соперник - твой друг, чем начнут ему слегка подыгрывать.

Иными словами, рассматриваемый нами принцип отображает именно что тенденцию, а не детерминированность. Чем сильнее соотношения значений выигрышей и проигрышей подобны фигурировавшим в «дилемме заключённого», тем чаще и быстрее система будет подводить игроков к «наихудшему» варианту и тем «более наихудшим» будет этот вариант.

Есть как бы «невидимая рука рынка», которая как бы невидимо подталкивает игроков… ну, вы знаете. Точнее, нет, может быть, и не знаете. В классическом варианте «рука рынка» как бы подталкивает куда всем надо, а тут она толкает совсем не туда. Не во всеобщее благо, а в перманентный кризис, которого при иных раскладах можно было бы избежать, что нам иллюстрирует и «дилемма заключённого», и гипотетический пример с конкуренцией фирм, и реальный пример с неизбежным завышением сроков разработки софта, о котором речь шла в предыдущей статье.

Рынок толкает игроков к равновесию Нэша, которое сколь угодно далеко может отстоять от их общего и личного блага.

В данном случае мы рассматривали только двух игроков и игру с двумя ходами, однако возможно и более широкое обобщение, которое как раз и является формулировкой равновесия Нэша:

Если в некоторой игре с произвольными количеством игроков и матрицей выигрышей существует такое состояние, что при выборе не соответствующего ему хода любым из игроков в отдельности его личный выигрыш уменьшится, то это состояние окажется «равновесным» для данной игры.

Кроме того, в ряде случаев ходы игроков будут иметь тенденцию стремиться к этому состоянию, даже если в этой игре есть другие состояния, в рамках которых выигрыш игроков в целом и/или по отдельности выше.

Приводить примеры такого общего случая способом, подобным ранее использованному, ощутимо тяжелее, поскольку добавление каждого игрока будет добавлять ещё одно измерение к матрице выигрышей. Однако об этом - позже.

В результате освоения данной главы студент должен:

знать

  • определение равновесия по Нэшу (как в чистых, так и в смешанных стратегиях);
  • основные свойства равновесия по Нэшу;
  • теоремы, формулирующие условия существования равновесия по Нэшу в стратегических играх;
  • определение понятия "равновесие дрожащей руки";

уметь

Решать задачу нахождения равновесия по Нэшу в биматричных играх (в том числе графическим методом для игр);

владеть

  • простейшими методами анализа свойств биматричных игр 2 х 2 с использованием результатов их графического решения;
  • системой представлений как о возможностях, так и об объективных проблемах практического применения понятия равновесия по Нэшу;
  • терминологическим аппаратом, позволяющим самостоятельно осваивать научную и профессиональную литературу, использующую понятие равновесия но Нэшу и его свойства.

В данной главе мы рассмотрим основной объект исследования теории бескоалиционных игр, получивший название равновесия по Нэшу. Данное понятие было предложено выдающимся американским математиком Джоном Нэшем (John Forbes Nash) сначала в его диссертации, а затем в серии работ, вышедших в 1950-1953 гг. .

^ Ситуацию s* в игре Г = (I, {} i Î I , {(s)} i Î I) будем называть равновесием но Нэшу (в чистых стратегиях), если для любого игрока i Î I

Другими словами, ситуация равновесия по Нэшу - это такая ситуация в игре, от которой ни одному из игроков невыгодно отклоняться поодиночке (при условии что остальные участники игры придерживаются своих стратегий, образующих равновесие по Нэшу).

Рассмотрим отображения, которые для каждого игрока i Î I для каждой возможной подситуации Î ставят в соответствие некоторую стратегию , являющуюся его наилучшим ответом для данной подситуации:

Отображения возвращающие наилучшие ответы на подситуации, также называют отображениями отклика игрока. Из неравенства (3.1) следует, что ситуация равновесия по Нэшу образуется стратегиями, которые возвращаются отображениями отклика всех игроков, т.е. ситуация равновесия по Нэшу - это ситуация, образуемая наилучшими ответами каждого игрока на наилучшие ответы остальных:

В свою очередь, из условия (3.3) вытекают следующие свойства.

  • 1. Строго доминируемые стратегии и НЛО-стратегии не могут входить в равновесие по Нэшу.
  • 2. Стратегии, образующие равновесие по Нэшу, не могут быть исключены в процессе удаления строго доминируемых стратегий и рационализации игры.

Одновременно следует подчеркнуть, что слабо доминируемые стратегии перечисленными свойствами не обладают. Несложно сконструировать пример равновесия по Нэшу, в котором будут присутствовать одна или несколько слабодоминируемых стратегий.

Для рассмотрения свойств равновесия по Нэшу вернемся к игре "дилемма заключенного" (см. табл. 2.1).

Как нетрудно заметить, данная игра имеет единственное состояние равновесия по Нэшу. Это ситуация (С, С), в которой оба игрока сознаются и получают по пять лет тюремного наказания. Фундаментальным качеством ситуации (С, С) является именно то, что от нее действительно никому невыгодно отклоняться поодиночке. Если один из заключенных попытается сменить стратегию с "сознаться" на "молчать", то

этим он только ухудшит свое положение - вместо пяти лет наказания получит десять - и улучшит положение другого игрока, которого отпустят.

Нельзя не признать, что ситуация равновесия в данном примере является неэффективным исходом для заключенных. Ведь в ситуации (М, М) - оба молчат - их полезности выше (срок наказания составляет один год против пяти). Однако ситуация (М, М) обладает тем недостатком, что она неустойчива. В ней каждому из игроков выгодно сменить стратегию "молчать" на "сознаться", при условии что другой игрок продолжает придерживаться стратегии "молчать". В этом случае наказание для предавшего становится нулевым, правда, резко возрастает для преданного: с года до десяти.

Таким образом, дилемма заключенного достаточно ярко отражает тот факт, что

равновесие по Нэшу - необязательно "самая выгодная" ситуация для игроков, это устойчивая ситуация.

Также на примере дилеммы заключенного достаточно наглядно может быть продемонстрировано соотношение равновесия по Нэшу с таким фундаментальным понятием экономики, как оптимальность по Парето . Напомним, что

распределение называют оптимальным но Парето (Парето-оптимальным), когда полезность (благосостояние) ни одного из участников этого распределения не может быть увеличена без уменьшения полезности какого-либо другого участника.

Нетрудно заметить, что в дилемме заключенного ситуация равновесия но Нэшу является единственной Парето-неоптимальной: полезность участников "безболезненно для каждого из них" можно улучшить, перейдя от ситуации (С, С) к ситуации (М, М), но последняя не является равновесием по Нэшу в силу своей неустойчивости. С этой точки зрения дилемма заключенного является классическим примером, демонстрирующим различия между понятиями "равновесие по Нэшу" и "оптимальность по Парето".

Продемонстрируем возможности практического использования концепции равновесия по Нэшу на примере сюжетов из литературного приложения.

  • За свой вклад в теорию некооперативных игр Дж. Нэш в 1994 г. получил Нобелевскую премию по экономике
  • Введено итальянским экономистом и социологом Вильфредо Парето (1848-1923)