Информационно развлекательный портал
Поиск по сайту

Равновесие по нэшу графическая интерпретация. Научная электронная библиотека. Неоптимальное оптимальное решение по Нэшу

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A i B j каждый из игроков имеет свой выигрыш a ij для первого игрока и b ij – для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. С помощью онлайн-калькулятора можно найти решение биматричной игры , а также ситуации оптимальные по Парето и ситуации устойчивые по Нэшу .

Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения:

  • игрок А – может выбрать любую из стратегий А 1 ,…,А m ,
  • игрок В – любую из стратегий В 1 ,…,В n .

При этом их совместный выбор оценивается вполне определённо: если игрок А выбрал i-ю стратегию А i , а игрок В – k -ю стратегию В k , то в итоге выигрыш игрока А будет равен некоторому числу a ik , а выигрыш игрока В некоторому, вообще говоря, другому числу b ik .
Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы.

Первая из таблиц описывает выигрыш игрока А, а вторая – выигрыш игрока В. Обычно эти таблицы записывают в виде матрицы.
Здесь А – платёжная матрица игрока А, В – платёжная матрица игрока В.

Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны) получаются две платёжные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игребиматричная .

Равновесие Нэша – равновесие, когда каждый участник игры выбирает стратегию, которая является для него оптимальной при условии, что остальные участники игры придерживаются определенной стратегии.
Равновесие Нэша не всегда является наиболее оптимальным для участников. В этом случае говорят, что равновесие не является Парето-оптимальным .
Чистая стратегия – определенная реакция игрока на возможные варианты поведения других игроков.
Смешанная стратегия – вероятностная (не определенная точно) реакция игрока на поведение других игроков.

Пример №1 . Борьба за рынки сбыта.
Фирма а намерена сбыть партию товара на одном из двух рынков, контролируемых более крупной фирмой b . С этой целью она проводит подготовительную работу, связанную с определенными затратами. Если фирма b разгадает, на каком из рынков фирма а будет продавать свой товар, она примет контрмеры и воспрепятствует "захвату" рынка (этот вариант означает поражение фирмы а); если нет, то фирма а одерживает победу. Предположим, что для фирмы а проникновение на первый рынок более выгодно, чем проникновение на второй, но и борьба на первом рынке требует от нее больших средств. Например, победа фирмы а на первом рынке приносит ей вдвое большую прибыль, чем победа на втором, но зато поражение на первом рынке полностью ее разоряет.
Составим математическую модель этого конфликта, считая фирму а игроком 1 и фирму b игроком 2. Стратегии игрока 1: А 1 – проникновение на рынок 1, А 2 – проникновение на рынок 2; стратегии игрока 2: В 1 – контрмеры на рынке 1, В 2 – контрмеры на рынке 2. Пусть для фирмы а ее победа на 1-м рынке оценивается в 2 единицы, а победа на 2-м рынке – в 1 единицу; поражение фирмы а на 1-м рынке оценивается в -10, а на 2-м в -1. Для фирмы b ее победа составляет соответственно 5 и 1 единицу, а поражение -2 и -1. Получаем в итоге биматричную игру Г с матрицами выигрышей
.
По теореме эта игра может иметь либо чистые, либо вполне смешанные ситуации равновесия. Ситуаций равновесия в чистых стратегиях здесь нет. Убедимся теперь, что данная игра имеет вполне смешанную ситуацию равновесия. Находим , .
Итак, рассматриваемая игра имеет единственную ситуацию равновесия , где , . Она может быть реализована при многократном повторении игры (то есть при многократном воспроизведении описанной ситуации) следующим образом: фирма а должна использовать чистые стратегии 1 и 2 с частотами 2/9 и 7/9, а фирма b – чистые стратегии 1 и 2 с частотами 3/14 и 11/14. Любая из фирм, отклонившись от указанной смешанной стратегии, уменьшает свой ожидаемый выигрыш.

Пример №2 . Найти ситуации оптимальные по Парето и ситуации устойчивые по Нэшу для биматричной игры.

Пример №3 . Имеются 2 фирмы: первая может произвести одно из двух изделий А 1 и А 2 , вторая – одно из двух изделий B 1 , B 2 . Если первая фирма произведет продукцию A i (i = 1, 2), а вторая - B j (j = 1, 2), то прибыль этих фирм (зависящая от того, являются ли эти изделия взаимодополняющими или конкурирующими), определяется таблицей №1:

В 1 В 2
А 1 (5, 6) (3, 2)
А 2 (2, 1) (5, 3)
Считая, что фирмы заключают между собой соглашение, определить справедливое распределение прибыли, используя арбитражное решение Нэша.

Ситуации, когда в игре существует равновесие в доминирующих стратегиях, достаточно редки. И далеко не во всех играх можно найти решение, отбрасывая строго доминируемые стратегии. Соответствующий пример игры представлен в Таблице 16.8 .

Второй игрок выберет стратегию A, если предполагает, что первый выберет стратегию Z; в то же время стратегия B для него предпочтительнее в случае, если первый выберет Y.

Таблица 16.8.

Естественно предположить, что при отсутствии у всех игроков доминирующих стратегий, выбор каждого игрока зависит от ожиданий того, какими будут выборы других. Далее мы рассмотрим концепцию решения, основанную на этой идее.

16.2.4 Равновесие по Нэшу

Кроме ситуаций, рассмотренных в предыдущем разделе, бывают ситуации14 , которые естественно моделировать, исходя из следующих предположений:

игроки при принятии решений ориентируются на предполагаемые действия партнеров;

ожидания являются равновесными (совпадают с фактически выбранными партнерами действиями).

Если считать, что все игроки рациональны, так что каждый выбирает стратегию, дающую ему наибольший выигрыш при данных ожиданиях, то эти предположения приводят к концепции решения, называемой равновесием Нэша . В равновесии у каждого игрока нет оснований пересматривать свои ожидания.

Формально равновесие Нэша определяется следующим образом.

Определение 90:

Набор стратегий x X является равновесием Нэша15 , если

1) стратегия x i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков xe −i :

ui (xi , xe −i ) = max ui (xi , xe −i ) i = 1, . . . , n;

x iX i

14 Можно представить себе популяцию игроков типа А (скажем, кошки) и игроков типа Б (скажем, мышки). Игрок типа А при встрече с игроком типа Б имеет оправданные своим или чужим опытом ожидания относительно поведения партнера типа Б, и заранее на них ориентируется (и наоборот). Однако это не единственный тип ситуаций, в которых рассматриваемый подход является адекватным.

15 Американский математик Джон Нэш получил Нобелевскую премию по экономике в 1994 г. вместе с Дж. Харшаньи и Р. Зельтеном «за новаторский анализ равновесий в теории некооперативных игр». Концепция равновесия была предложена в следующих статьях: J. F. Nash: Equilibrium Points in N-Person Games,

Proceedings of the National Academy of Sciences of the United States of America 36 (1950): 48–49; J. F. Nash: NonCooperative Games, Annals of Mathematics 54 (1951): 286–295 (рус. пер. Дж. Нэш: Бескоалиционные игры, в кн. Матричные игры, Н. Н. Воробьев (ред.), М.: Физматгиз, 1961: 205–221).

Следует оговориться, что сам Нэш не вводил в определение ожиданий. Исходное определение Нэша совпадает с тем свойством, о котором говорится далее.

xe −i = x−i i = 1, . . . , n

Заметим, что при использовании равновесия Нэша для моделирования игровых ситуаций вопросы о том, знают ли игроки цели партнеров, знают ли они о рациональности партнеров, умеют ли их просчитывать, и т. д., отходят на второй план. Способ формирования ожиданий выносится за рамки анализа; здесь важно только то, что ожидания являются равновесными.

Но если при анализе равновесия Нэша не важно, знает ли игрок цели других игроков, то может возникнуть сомнение в правомерности рассмотрения концепции Нэша в контексте игр с полной информацией. Все дело в том, что термин «полная информация» в теории игр имеет довольно узкое значение. Он фактически подразумевает только полноту сведений о типах партнеров (термин «тип игрока», разъясняется в параграфе, посвященном байесовским играм).

Как легко видеть, приведенное определение равновесия Нэша эквивалентно следующему свойству, которое обычно и используется в качестве определения:

Набор стратегий x X является равновесием Нэша, если стратегия xi каждого игрока является наилучшим для него откликом на стратегии других игроков x−i :

ui (xi , x−i ) = max ui (xi , x−i ) i = 1, . . . , n

x iX i

Это свойство можно также записать в терминах так называемых функций (отображений) отклика.

Определение 91:

Отображение отклика i-го игрока,

Ri : X−i 7→Xi

сопоставляет каждому набору стратегий других игроков, x−i X−i , множество стратегий i-го игрока, каждая из которых является наилучшим откликом на x−i . Другими словами,

ui (yi , x−i ) = max ui (xi , x−i ) x−i X−i , yi Ri (x−i )x i X i

Введение отображений отклика позволяет записать определение равновесия Нэша более компактно: набор стратегий x X является равновесием Нэша, если

xi Ri (x−i ) i = 1, . . . , n

Если отклик каждого игрока однозначен (является функцией), то множество равновесий Нэша совпадает с множеством решений системы уравнений:

xi = Ri (x−i ) i = 1, . . . , n.

В Таблице 16.8 отображения отклика игроков изображены подчеркиванием выигрышей, соответствующих оптимальным действиям. Равновесие Нэша в данной игре - клетка (B, Y), поскольку выигрыши обоих игроков в ней подчеркнуты.

Проиллюстрируем использование функций отклика на примере игры, в которой игроки имеют континуум стратегий.

Игра 5. «Международная торговля»

Две страны одновременно выбирают уровень таможенных пошлин, τi . Объем торговли между странами16 , x, зависит от установленных пошлин как

x = 1 − τ1 − τ2

Цель каждой страны - максимизировать доходы ui = τi x.

Максимизируем выигрыш 1-й страны,

τ1 (1 − τ1 − τ2 )

по τ1 считая фиксированным уровень пошлины, установленный 2-й страной. Условие первого порядка имеет вид

1 − 2τ1 − τ2 = 0

Поскольку максимизируемая функция строго вогнута, то условие первого порядка соответствует глобальному максимуму.

Условие первого порядка для задачи максимизации выигрыша 2-й страны находится аналогично:

1 − τ1 − 2τ2 = 0

Решив систему из двух линейных уравнений, найдем равновесие Нэша:

τ1 = τ2 = 1/3

Оптимальный отклик 1-й страны на уровень таможенной пошлины, установленной 2-й страной описывается функцией

τ1 (τ2 ) =1 − τ 2

Аналогично, функция отклика 2-й страны имеет вид

τ2 (τ1 ) =1 − τ 1 2

Чтобы найти равновесие Нэша, требуется решить систему уравнений

τ1 (τ2 ) = τ1 ,

τ2 (τ) = τ .

Графически поиск равновесия Нэша показан не Рис. 16.3 . Точки, лежащие на кривых оптимального отклика τ1 (τ2 ) и τ2 (τ1 ), характеризуются тем, что в них касательные к кривым безразличия игроков параллельны соответствующей оси координат. Напомним, что кривой безразличия называют множество точек, в которых полезность рассматриваемого индивидуума одна и та же (ui (x) = const). Равновесие находится как точка пересечения кривых отклика.

Преимущество использования концепции равновесия Нэша состоит в том, что можно найти решение и в тех играх, в которых отбрасывание доминируемых стратегий не позволяет этого сделать. Однако сама концепция может показаться более спорной, поскольку опирается на сильные предположения о поведении игроков.

Связь между введенными концепциями решений описывается следующими утверждения-

16 В этой игре мы для упрощения не делаем различия между экспортом и импортом.

(τ2 )

равновесия

τ2 (τ1 )

Рис. 16.3. Равновесие Нэша в игре «Международная торговля»

Теорема 151:

Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из составляющих его стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Обратная теорема верна в случае единственности.

Теорема 152:

Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Доказательства этих двух утверждений даны в Приложении B (с. 641 ). Нам важно здесь, что концепция Нэша не входит в противоречие с идеями рациональности, заложенной в процедуре отбрасывания строго доминируемых стратегий.

По-видимому, естественно считать, что разумно определенное равновесие, не может быть отброшено при последовательном отбрасывании строго доминируемых стратегий. Первую из теорем можно рассматривать как подтверждение того, что концепция Нэша достаточно разумна. Отметим, что данный результат относится только к строгому доминированию. Можно привести пример равновесия Нэша с одной или несколькими слабо доминируемыми стратегиями (см. напр. Таблицу16.11 на с.652 ).

16.2.5 Равновесие Нэша в смешанных стратегиях

Нетрудно построить примеры игр, в которых равновесие Нэша отсутствует. Следующая игра представляет пример такой ситуации.

Игра 6. «Инспекция»

В этой игре первый игрок (проверяемый) поставлен перед выбором - платить или не платить подоходный налог. Второй - налоговой инспектор, решает, проверять или не проверять именно этого налогоплательщика. Если инспектор «ловит» недобросовестного налогоплательщика, то взимает в него штраф и получает поощрение по службе, более чем компенсирующее его издержки; в случае же проверки исправного налогоплательщика, инспектор, не получая поощрения, тем не менее несет издержки, связанные с проверкой. Матрица выигрышей представлена в Таблице 16.9 .

Таблица 16.9.

Инспектор

проверять

не проверять

нарушать

Проверяемый

не нарушать

Если инспектор уверен, что налогоплательщик выберет не платить налог, то инспектору выгодно его проверить. С другой стороны, если налогоплательщик уверен, что его проверят, то ему лучше заплатить налог. Аналогичным образом, если инспектор уверен, что налогоплательщик заплатит налог, то инспектору не выгодно его проверять, а если налогоплательщик уверен, что инспектор не станет его проверять, то он предпочтет не платить налог. Оптимальные отклики показаны в таблице подчеркиванием соответствующих выигрышей. Очевидно, что ни одна из клеток не может быть равновесием Нэша, поскольку ни в одной из клеток не подчеркнуты одновременно оба выигрыша.

В подобной игре каждый игрок заинтересован в том, чтобы его партнер не смог угадать, какую именно стратегию он выбрал. Этого можно достигнуть, внеся в выбор стратегии элемент неопределенности.

Те стратегии, которые мы рассматривали раньше, принято называть чистыми стратегиями . Чистые стратегии в статических играх по сути дела совпадают с действиями игроков. Но в некоторых играх естественно ввести в рассмотрение также смешанные стратегии. Подсмешанной стратегией понимают распределение вероятностей на чистых стратегиях. В частном случае, когда множество чистых стратегий каждого игрока конечно,

Xi = {x1 i , . . . , xn i i }

(соответствующая игра называется конечной ,), смешанная стратегия представляется вектором вероятностей соответствующих чистых стратегий:

µi = (µ1 i , . . . , µn i i )

Обозначим множество смешанных стратегий i-го игрока через Mi :

Mi = µi µk i > 0, k = 1, . . . , ni ; µ1 i + · · · + µn i i = 1

Как мы уже отмечали, стандартное предположение теории игр (как и экономической теории) состоит в том, что если выигрыш - случайная величина, то игроки предпочитают действия, которые приносят им наибольший ожидаемый выигрыш. Ожидаемый выигрыш i-го игрока, соответствующий набору смешанных стратегий всех игроков, (µ1 , . . . , µm ), вычисляется по формуле

Ожидание рассчитывается в предположении, что игроки выбирают стратегии независимо (в статистическом смысле).

Смешанные стратегии можно представить как результат рандомизации игроком своих действий, то есть как результат их случайного выбора. Например, чтобы выбирать каждую из двух возможных стратегий с одинаковой вероятностью, игрок может подбрасывать монету.

Эта интерпретация подразумевает, что выбор стратегии зависит от некоторого сигнала, который сам игрок может наблюдать, а его партнеры - нет17 . Например, игрок может выбирать стратегию в зависимости от своего настроения, если ему известно распределение вероятностей его настроений, или от того, с какой ноги он в этот день встал18 .

Определение 92:

Набор смешанных стратегий µ = (µ1 , . . . , µm ) являетсяравновесием Нэша в смешанных стратегиях , если

1) стратегия µ i каждого игрока является наилучшим для него откликом на ожидаемые им стратегии других игроков µe −i :

U(µi , µe −i ) = max U(µi , µe −i ) i = 1, . . . , n;

µ iM i

2) ожидания совпадают с фактически выбираемыми стратегиями:

µe −i = µ−i i = 1, . . . , n.

Заметим, что равновесие Нэша в смешанных стратегиях является обычным равновесием Нэша в так называемом смешанном расширении игры, т. е. игре, чистые стратегии которой являются смешанными стратегиями исходной игры.

Найдем равновесие Нэша в смешанных стратегиях в Игре 16.2.5 .

Обозначим через µ вероятность того, что налогоплательщик не платит подоходный налог,

а через ν - вероятность того, что налоговой инспектор проверяет налогоплательщика.

В этих обозначениях ожидаемый выигрыш налогоплательщика равен

U1 (µ, ν) = µ[ν · (−1) + (1 − ν) · 1] + (1 − µ)[ν · 0 + (1 − ν) · 0] =

= µ(1 − 2ν),

а ожидаемый выигрыш инспектора равен

U2 (µ, ν) = ν[µ · 1 + (1 − µ) · (−1)] + (1 − µ)[µ · 0 + (1 − µ) · 0] = = ν(2µ − 1)

Если вероятность проверки мала (ν < 1/2), то налогоплательщику выгодно не платить налог, т. е. выбрать µ = 1. Если вероятность проверки велика, то налогоплательщику выгодно заплатить налог, т. е. выбрать µ = 0. Если же ν = 1/2, то налогоплательщику все равно, платить налог или нет, он может выбрать любую вероятность µ из интервала . Таким образом, отображение отклика налогоплательщика имеет вид:

Рассуждая аналогичным образом, найдем отклик налогового инспектора:

0, если µ < 1/2

ν(µ) = , если µ = 1/2

1, если µ > 1/2.

17 Если сигналы, наблюдаемые игроками, статистически зависимы, то это может помочь игрокам скоординировать свои действия. Это приводит к концепции коррелированного равновесия.

18 Впоследствии мы рассмотрим, как можно достигнуть эффекта рандомизации в рамках байесовского равновесия.

Графики отображений отклика обоих игроков представлены на Рис. 16.4 . По осям на этой диаграмме откладываются вероятности (ν и µ соответственно). Они имеют единственную общую точку (1/2, 1/2). Эта точка соответствует равновесию Нэша в смешанных стратегиях. В этом равновесии, как это всегда бывает в равновесиях с невырожденными смешанными стратегиями (то есть в таких равновесиях, в которых ни одна из стратегий не выбирается с вероятностью 1), каждый игрок рандомизирует стратегии, которые обеспечивают ему одинаковую ожидаемую полезность. Вероятности использования соответствующих чистых стратегий, выбранные игроком, определяются не структурой выигрышей данного игрока, а структурой выигрышей его партнера, что может вызвать известные трудности с интерпретацией данного решения.

Рис. 16.4. Отображения отклика в игре «Инспекция»

В отличие от равновесия в чистых стратегиях, равновесие в смешанных стратегиях в конечных играх существует всегда19 , что является следствием следующего общего утверждения.

Теорема 153:

Предположим, что в игре G = hI, {Xi }i I , {ui }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда в игре G существует равновесие Нэша (в чистых стратегиях).

Существование равновесия Нэша в смешанных стратегиях в играх с конечным числом чистых стратегий является следствием того, что равновесие в смешанных стратегиях является равновесием в чистых стратегиях в смешанном расширении игры.

Теорема 154 (Следствие (Теорема Нэша)):

Равновесие Нэша в смешанных стратегиях существует в любой конечной игре.

Заметим, что существование в игре равновесия в чистых стратегиях не исключает существования равновесия в невырожденных смешанных стратегиях.

Рассмотрим в Игре 16.2.1 «Выбор компьютера» случай, когда выгоды от совместимости значительны, т. е. a < c и b < c. В этом варианте игры два равновесия в чистых стратегиях: (IBM, IBM) и (Mac, Mac). Обозначим µ и ν вероятности выбора компьютера IBM PC первым и вторым игроком соответственно. Ожидаемый выигрыш 1-го игрока равен

U1 (µ, ν) = µ[ν · (a + c) + (1 − ν) · a] + (1 − µ)[ν · 0 + (1 − ν) · c] = = µ[ν · 2c − (c − a)] + (1 − ν)c

а его отклик имеет вид

µ(ν) = ,

Ожидаемый выигрыш 2-го игрока равен

если ν < (c − a)/2c

если ν = (c − a)/2c

если ν > (c − a)/2c.

U2 (µ, ν) = ν[µ · c + (1 − µ) · 0] + (1 − ν)[µ · b + (1 − µ) · (b + c)] =

= ν[µ · 2c − (b + c)] + b + (1 − µ)c

а его отклик имеет вид

ν(µ) = ,

если µ < (b + c)/2c

если µ = (b + c)/2c

если µ > (b + c)/2c.

Графики отображений отклика и точки, соответствующие трем равновесиям изображены на Рис. 16.5 . Как видно, в рассматриваемой игре кроме двух равновесий в чистых стратегиях имеется одно равновесие в невырожденных смешанных стратегиях. Соответствующие вероятности равны

µ = b + cи ν = c − a

Рис. 16.5. Случай, когда в игре «Выбор компьютера» существует три равновесия, одно из которых - равновесие в невырожденных смешанных стратегиях

Приложение A

Теорема повторяется, номер обновляется, ссылки на это приложение нет. Можно поменять местами A и B

Теорема 155:

Предположим, что в игре G = hI, {Xi }i I , {ui0 }i I i у любого игрока множество стратегий Xi непусто, компактно и выпукло, а функция выигрыша ui (·) вогнута по xi и непрерывна. Тогда существует равновесие Нэша.

Доказательство: Докажем, что отображение отклика, Ri (·), каждого игрока полунепрерывно сверху и его значение при каждом x−i X−i непусто и выпукло. Непустота следует из теоремы Вейерштрасса (непрерывная функция на компакте достигает максимума).

16.2. Статические игры с полной информацией

Докажем выпуклость. Пусть z0 , z00 Ri (x−i ). Очевидно, что u(z0 , x−i ) = u(z00 , x−i вогнутости по xi функции ui (·) следует, что при α

u(αz0 + (1 − α)z00 , x−i ) > αu(z0 , x−i ) + (1 − α)u(z00 , x−i ) =

U(z0 , x−i ) = u(z00 , x−i )

Поскольку функция ui (·) достигает максимума в точках z0 и z00 , то строгое неравенство

невозможно. Таким образом,

αz0 + (1 − α)z00 Ri (x−i )

Докажем теперь полунепрерывность сверху отображения Ri (·). Рассмотрим последовательность xn i сходящуюся к x¯i и последовательность xn −i сходящуюся к x¯−i , причем xn i Ri (xn −i ). Заметим, что в силу компактности множеств Xj x¯i Xi и x¯−i X−i . Нам нужно доказать, что x¯i Ri (x¯−i ). По определению отображения отклика

u(xn i , xn −i ) > u(xi , xn −i ) xi Xi , n

Из непрерывности функции ui (·) следует, что

u(¯xi , x¯−i ) > u(xi , x¯−i ) xi Xi

Тем самым, по введенному выше определению отображения отклика, x¯i Ri (x¯−i ). Опираясь на доказанные только что свойства отображения Ri (·) и на теорему Какутани,

докажем существование равновесия по Нэшу, то есть такого набора стратегий x X , для

которого выполнено

xi Ri (x−i ) i = 1, . . . , n

Определим отображение R(·) из X в X следующим образом:

R(x) = R1 (x−1 ) × · · · × Rn (x−n )

Отметим, что это отображение удовлетворяет тем же свойствам, что и каждое из отображений Ri (·), так как является их декартовым произведением.

Отображение R(·) и множество X удовлетворяют свойствам, которые необходимы для выполнения теоремы Какутани. Таким образом, существует неподвижная точка отображения

Очевидно, что точка x есть равновесие по Нэшу.

Приложение B

В этом приложении мы формально докажем утверждения о связи между равновесием Нэша и процедурой последовательного отбрасывания строго доминируемых стратегий.

Сначала определим формально процедуру последовательного отбрасывания строго доминируемых стратегий. Пусть исходная игра задана как

G = hI, {Xi }I , {ui }I i.

Определим последовательность игр {G[t] }t=0,1,2,... , каждая из которых получается из последующей игры отбрасыванием строго доминируемых стратегий. Игры отличаются друг от друга множествами допустимых стратегий:

G[t] = hI, {Xi [t] }I , {ui }I i

Процедура начинается с G= G.

Множество допустимых стратегий i-го игрока на шаге t + 1 рассматриваемой процедуры берется равным множеству не доминируемых строго стратегий i-го игрока в игре t-го шага. Множества не доминируемых строго стратегий будем обозначать через NDi (см. определение строго доминируемых стратегий (Определение89 , с.631 )). Формально

NDi = xi Xi yi Xi : ui (yi , x−i ) > ui (xi , x−i ) x−i X−i

Таким образом, можно записать шаг рассматриваемой процедуры следующим образом:

X i = ND i [t]

где NDi [t] - множество не доминируемых строго стратегий в игре G[t] .

Приведем теперь доказательства Теорем 151 и152 (с.636 ). Теорема151 утверждает следующее:

: Если x = (x1 , . . . , xm ) - равновесие Нэша в некоторой игре, то ни одна из стратегий не может быть отброшена в результате применения процедуры последовательного отбрасывания строго доминируемых стратегий.

Если использовать только что введенные обозначения, то Теорема 151 утверждает, что если x - равновесие Нэша в исходной игре G, то на любом шаге t выполнено

xi Xi [t] , i I, t = 1, 2, . . .

x X[t] , t = 1, 2, . . .

Доказательство (Доказательство Теоремы 151 ): Пусть есть такой шаг τ , что на нем должна быть отброшена стратегия xi некоторого игрока i I . Предполагается, что на предыдущих шагах ни одна из стратегий не была отброшена:

x X[t] , t = 1, . . . , τ.

По определению строгого доминирования существует другая стратегия игрока i, x0 i Xi [τ] , которая дает этому игроку в игре G[τ] более высокий выигрыш при любых выборах других

ui (x0 i , x−i ) > ui (xi , x−i ) x−i X− [τ i ]

В том числе, это соотношение должно быть выполнено для x−i , поскольку мы предположили, что стратегии x−i не были отброшены на предыдущих шагах процедуры (x−i X− [τ i ] ). Значит,

: Если в результате последовательного отбрасывания строго доминируемых стратегий у каждого игрока остается единственная стратегия, xi , то x = (x1 , . . . , xm ) - равновесие Нэша в этой игре.

Данная теорема относится к случаю, когда в процессе отбрасывания строго доминируемых

стратегий начиная с некоторого шага ¯ остается единственный набор стратегий, т. е. t x

Теорема утверждает, что x является единственным равновесием Нэша исходной игры.

Доказательство (Доказательство Теоремы 152 ): Поскольку, согласно доказанной только что теореме, ни одно из равновесий Нэша не может быть отброшено, нам остается только доказать, что указанный набор стратегий x является равновесием Нэша. Предположим, что это не так. Это означает, что существует стратегия x˜i некоторого игрока i, такая что

ui (xi , x−i ) < ui (˜xi , x−i )

По предположению, стратегия x˜i была отброшена на некотором шаге τ , поскольку она не совпадает с xi . Таким образом, существует некоторая строго доминирующая ее стратегия x0 i Xi [τ] , так что

ui (x0 i , x−i ) > ui (˜xi , x−i ) x−i X− [τ i ]

В том числе это неравенство выполнено при x−i = x−i :

ui (x0 i , x−i ) > ui (˜xi , x−i )

Стратегия x0 i не может совпадать со стратегией xi , поскольку в этом случае вышеприведенные неравенства противоречат друг другу. В свою очередь, из этого следует, что должна существовать стратегия x00 i , которая доминирует стратегию x0 i на некотором шаге τ0 > τ , т. е.

(x00

[τ0 ]

−i

В том числе

ui (x00 i , x−i ) > ui (x0 i , x−i )

Можно опять утверждать, что стратегия x00 i не может совпадать со стратегией xi , иначе вышеприведенные неравенства противоречили бы друг другу.

Продолжая эти рассуждения, мы получим последовательность шагов τ < τ0 < τ00 < . . .

и соответствующих допустимых стратегий x0 i , x00 i , x000 i , . . ., не совпадающих с xi . Это противо-

/ 667. Два игрока размещают некоторый объект на плоскости, то есть выбирают его координаты (x, y). Игрок 1 находится в точке (x 1 , y1 ), а игрок 2 - в точке (x2 , y2 ). Игрок 1 выбирает координату x, а игрок 2 - координату y. Каждый стремиться, чтобы объект находился как можно ближе к нему. Покажите, что в этой игре у каждого игрока есть строго доминирующая стратегия.

/ 668. Докажите, что если в некоторой игре у каждого из игроков существует строго доминирующая стратегия, то эти стратегии составляют единственное равновесие Нэша.

/ 669. Объясните, почему равновесие в доминирующих стратегиях должно быть также равновесием в смысле Нэша. Приведите пример игры, в которой существует равновесие в доминирующих стратегиях, и, кроме того, существуют равновесия Нэша, не совпадающие с равновесием в доминирующих стратегиях.

Найдите в следующих играх все равновесия Нэша.

/ 670. Игра 16.2.1 (с.625 ), выигрыши которой представлены в Таблице??////??

/ 671. «Орехи»

Два игрока делят между собой 4 ореха. Каждый делает свою заявку на орехи: xi = 1, 2 или 3. Если x1 + x2 6 4, то каждый получает сколько просил, в противном случае оба не получают ничего.

/ 672. Два преподавателя экономического факультета пишут учебник. Качество учебника (q) зависит от их усилий (e1 и e2 соответственно) в соответствии с функцией

q = 2(e1 + e2 ).

Целевая функция каждого имеет вид

ui = q − ei ,

т. е. качество минус усилия. Можно выбрать усилия на уровне 1, 2 или 3.

/ 673. «Третий лишний» Каждый из трех игроков выбирает одну из сторон монеты: «орёл» или «решка». Если

выборы игроков совпали, то каждому выдается по 1 рублю. Если выбор одного из игроков отличается от выбора двух других, то он выплачивает им по 1 рублю.

/ 674. Три игрока выбирают одну из трех альтернатив: A, B или C . Альтернатива выбирается голосованием большинством голосов. Каждый из игроков голосует за одну и только за одну альтернативу. Если ни одна из альтернатив не наберет большинство, то будет выбрана альтернатива A. Выигрыши игроков в зависимости от выбранной альтернативы следующие:

u1 (A) = 2, u2 (A) = 0, u3 (A) = 1,

u1 (B) = 1, u2 (B) = 2, u3 (B) = 0,

u1 (C) = 0, u2 (C) = 1, u3 (C) = 2.

/ 675. Формируются два избирательных блока, которые будут претендовать на места в законодательном собрании города N-ска. Каждый из блоков может выбрать одну из трех ориентаций: «левая» (L), «правая» (R) и «экологическая» (E). Каждая из ориентаций может привлечь 50, 30 и 20% избирателей соответственно. Известно, что если интересующая их ориентация не представлена на выборах, то избиратели из соответствующей группы не будут голосовать. Если блоки выберут разные ориентации, то каждый получит соответствующую долю голосов. Если блоки выберут одну и ту же ориентацию, то голоса соответствующей группы избирателей разделятся поровну между ними. Цель каждого блока - получить наибольшее количество голосов.

/ 676. Два игрока размещают точку на плоскости. Один игрок выбирает абсциссу, другой -

ординату. Их выигрыши заданы функциями:

а) ux (x, y) = −x2 + x(y + a) + y2 , uy (x, y) = −y2 + y(x + b) + x2 ,

б) ux (x, y) = −x2 − 2ax(y + 1) + y2 , uy (x, y) = −y2 + 2by(x + 1) + x2 , в) ux (x, y) = −x − y/x + 1/2y2 , uy (x, y) = −y − x/y + 1/2x2 ,

(a, b - коэффициенты).

/ 677. «Мороженщики на пляже»

Два мороженщика в жаркий день продают на пляже мороженое. Пляж можно представить как единичный отрезок. Мороженщики выбирают, в каком месте пляжа им находиться, т. е. выбирают координату xi . Покупатели равномерно рассредоточены по пляжу и покупают мороженое у ближайшего к ним продавца. Если x1 < x2 , то первый обслуживают (x1 + x2 )/2 долю пляжа, а второй - 1 − (x1 + x2 )/2. Если мороженщики расположатся в одной и той же точке (x1 = x2 ), покупатели поровну распределятся между ними. Каждый мороженщик стремиться обслуживать как можно большую долю пляжа.

/ 678. «Аукцион» Рассмотрите аукцион, подобный описанному в Игре 16.2.2 , при условии, что выигравший

аукцион игрок платит названную им цену.

/ 679. Проанализируйте Игру 16.2.1 «Выбор компьютера» (с.624 ) и найдите ответы на следующие вопросы:

а) При каких условиях на параметры a, b и c будет существовать равновесие в доминирующих стратегиях? Каким будет это равновесие?

б) При каких условиях на параметры будет равновесием Нэша исход, когда оба выбирают IBM? Когда это равновесие единственно? Может ли оно являться также равновесием в доминирующих стратегиях?

/ 680. Каждый из двух соседей по подъезду выбирает, будет он подметать подъезд раз в неделю или нет. Пусть каждый оценивает выгоду для себя от двойной чистоты в a > 0 денежных единиц, выгоду от одинарной чистоты - в b > 0 единиц, от неубранного подъезда - в 0, а свои затраты на личное участие в уборке - в c > 0. При каких соотношениях между a, b и c в игре сложатся равновесия вида: (0) никто не убирает, (1) один убирает, (2) оба убирают?

/ 681. Предположим, что в некоторой игре двух игроков, каждый из которых имеет 2 стратегии, существует единственное равновесие Нэша. Покажите, что в этой игре хотя бы у одного из игроков есть доминирующая стратегия.

/ 682. Каждый из двух игроков (i = 1, 2) имеет по 3 стратегии: a, b, c и x, y, z соответственно. Взяв свое имя как бесконечную последовательность символов типа иваниваниван. . . , задайте выигрыши первого игрока так: u1 (a, x) = «и», u1 (a, y) = «в», u1 (a, z) = «а», u1 (b, x) = «н», u1 (b, y) = «и», u1 (b, z) = «в», u1 (c, x) = «а», u1 (c, y) = «н», u1 (c, z) = «и». Подставьте вместо каждой буквы имени ее номер в алфавите, для чего воспользуйтесь Таблицей16.10 . Аналогично используя фамилию, задайте выигрыши второго игрока, u2 (·).

1) Есть ли в Вашей игре доминирующие и строго доминирующие стратегии? Если есть, то образуют ли они равновесие в доминирующих стратегиях?

2) Каким будет результат последовательного отбрасывания строго доминируемых страте-

3) Найдите равновесия Нэша этой игры.

Таблица 16.10.

/ 683. Составьте по имени, фамилии и отчеству матричную игру трех игроков, у каждого из которых по 2 стратегии. Ответьте на вопросы предыдущей задачи.

/ 684. Заполните пропущенные выигрыши в следующей таблице так, чтобы в получившейся игре. . .

(0) не было ни одного равновесия Нэша,

было одно равновесие Нэша,

было два равновесия Нэша,

было три равновесия Нэша,

(4) было четыре равновесия Нэша.

/ 685. 1) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть меньше, чем

min max ui (xi , x−i ).

x −iX −ix iX i

2) Объясните, почему в любом равновесии Нэша выигрыш i-го игрока не может быть

меньше, чем

x iX ix −iX −i

Проявляет себя в реальности, дабы показать, что это понятие является не просто абстрактным термином, а обобщением реально существующей закономерности. Однако, несмотря на наглядность примера, на основании только его одного может показаться, что мы наткнулись на какой-то вырожденный случай. Поэтому имеет смысл рассмотреть и более общее описание данного правила.

Многие читатели, возможно, знакомы с равновесием Нэша по одному весьма распространённому его частному случаю - так называемой «дилемме заключённого». Его суть примерно в следующем.

В тюрьме находятся два заключённых, которых взяли с поличным по отдельности, но ещё подозревают в более тяжких преступлениях. Если участие докажут, то срок заключённых возрастёт до десяти лет. Сейчас же они отсиживают по году каждый. Следствие предлагает каждому из них пойти на сделку и дать показания против второго. В этом случае первому срок скостят до полугода, а второй сядет на десять. Однако заключённые понимают, что если они оговорят друг друга, то вряд ли их обоих пощадят - скорее добавят каждому ещё лет по пять.

Расклад можно отобразить при помощи следующей таблицы.

Легко видеть, что «зелёные» варианты (1, 2) и (2, 1) являются симметричными, в двух же других положение заключённых будет идентичным. Поэтому можно рассмотреть логику ситуации с точки зрения только одного из заключённых - для второго она будет такой же.

Заключённый, разумеется, хочет наименьшего срока для себя. Но если он будет хранить молчание, то, возможно, его коллега даст против него показания, чем повысит ему срок до десяти лет. Если бы не обещанное снижение срока, то можно было бы тешить себя мыслью «а зачем мне это?», но соблазн снизить срок слишком вели́к. Кроме того, второй заключённый, как понимает первый, будет подозревать его, первого, в том, что он даст показания против второго и повысит тем самым ему срок.

«Обидно будет оказаться крайним и загреметь на десять лет», - думает первый. Но «и второй наверняка думает так же, и так же подозревает меня, - понимает он, - а потому шансов, что коллега меня не заложит, очень мало. Выходит, надо давать показания: если второй каким-то чудом промолчит, то будет полгода, проговорится - пять. Ну хоть не десять, которые я неизбежно получу из-за разоткровенничавшегося со следствием моего подельника!».

«Оранжевый» вариант (1, 1) является удобоваримым для обоих и в каком-то смысле это оптимум в данной ситуации. Однако у каждого есть ещё лучший вариант - соответствующий «зелёный» (1, 2) или (2, 1). В результате чего на деле будет реализован «красный» вариант (2, 2).

Можно сказать, что для каждого из заключённых он не так плох: всего пять лет против десяти в «зелёном» варианте в пользу подельника. Однако представим, что в «красном» варианте обоим дадут по десять. Логика в данном случае чуть-чуть поменяется: «если я его сдам, то хотя бы есть шанс отвертеться от десяти лет, а если промолчу - шансов нет, он меня наверняка заложит по тем же соображениям». Однако тут система подталкивает заключённых выбрать наихудший вариант из возможных. Действуя, что характерно, строго ради своей выгоды.

Рассмотрим теперь ещё одну ситуацию. Есть две фирмы - А и Б. Каждая из них может воспользоваться стратегией - Икс или Игрек. Однако на результаты оказывает влияние не только стратегия, выбранная самой фирмой, но и стратегия второй фирмы тоже. Выигрыш или проигрыш каждой из фирм мы представим в виде следующей таблицы.

Я специально для повышения накала страстей подобрал числа так, чтобы убыточное для обеих фирм состояние лишь незначительно отличалось бы от «соседних» с ним: тем удивительнее, что будет реализовано именно оно. Фирмы, действуя строго в своих интересах, с большой вероятностью захотят получить тысячу рублей вместо ста и тем самым не получат ничего, а наоборот, даже утратят. Переход же одной из фирм на стратегию Икс ещё сильнее ухудшит её положение - другая фирма будет обогащаться, а вторая терять ещё больше, хотя и незначительно больше.

Запишем вышеприведённые матрицы в более общем виде, абстрагировавшись от «фирм», «заключённых», «сроков» и «рублей». Положим, что у нас просто есть два игрока А и Б, играющие в некоторую игру, где на каждом ходе можно совершить один из двух ходов - Икс или Игрек. Выигрышем являются просто некие «баллы», наибольшее число которых каждый игрок и стремится набрать.

А делает ход Икс А делает ход Игрек
Б делает ход Икс А: a 0
Б: b 0
А: a 1 > a 0
Б: b 1 < b 3
Б делает ход Игрек А: a 2 < a 3
Б: b 2 > b 0
А: b 3
Б: a 3

Правила игры, представленные данной матрицей, будут «подталкивать» игроков к реализации «красного» варианта (2, 2), даже если выигрыши игроков в этом случае существенно меньше, чем во всех остальных вариантах. Правда, в зависимости от соотношения выигрышей (которые могут быть в том числе отрицательными - то есть проигрышами), обозначенных буквами «a» и «b» с индексами, частота реализации каждого из вариантов будет разной.

В частности, на выбор может влиять среднее арифметическое выигрышей при выборе каждой из стратегий, а также предположительная вероятность, с которой игрок сделает тот или иной ход (которая, кстати, может быть аппроксимирована частотой ходов, сделанных в предыдущих раундах). Так, в простейшем случае игрок А для оценки хода Икс складывает a 0 и a 2 и делит результат на два, полагая выбор хода со стороны Б равновероятным. То же самое он проделывает для хода Игрек - складывает a 1 с a 3 , после чего делит результат на два - и сравнивает результаты. В более сложном случае игрок считает сумму a 0 *p x + a 2 *p y , где p x и p y - вероятности ходов Икс и Игрек, сделанных игроком Б. Результат сравнивается с a 1 *p x + a 3 *p y .

Можно было бы, конечно, снова поделить результат на два, но поскольку деление на два имеет место быть для обоих вариантов хода, для сравнения величин эта операция необязательна, как, впрочем, и в случае «равновероятных ходов».

Также игрок может ориентироваться на сами величины. Например, если один из ходов означает вероятный проигрыш - особенно крупный, такой, какой игрок не может себе позволить, - игрок, не исключено, будет выбирать другой ход, даже если предположительный выигрыш при другом ходе в среднем ниже, но зато в обоих случаях положительный.

Наконец, надо помнить, что люди часто, скажем так, «помнят о другом игроке». Если второй игрок - конкурент или даже враг, то, возможно, будет иметь место тенденция выбирать такой ход, который навредит другому игроку, даже если первый игрок из-за этого выиграет мало, и даже, не исключено, проиграет. Если второй игрок - друг, то чаще будет выбираться ход, позволяющий чуть-чуть выиграть и ему тоже - в том случае, если «игра» - это не заранее заявленное соревнование, а какой-то процесс из реальной жизни. Возможности мести и поблажек, разумеется, зависят от соотношений в матрице - при некоторых из них скорее забудут, что соперник - твой друг, чем начнут ему слегка подыгрывать.

Иными словами, рассматриваемый нами принцип отображает именно что тенденцию, а не детерминированность. Чем сильнее соотношения значений выигрышей и проигрышей подобны фигурировавшим в «дилемме заключённого», тем чаще и быстрее система будет подводить игроков к «наихудшему» варианту и тем «более наихудшим» будет этот вариант.

Есть как бы «невидимая рука рынка», которая как бы невидимо подталкивает игроков… ну, вы знаете. Точнее, нет, может быть, и не знаете. В классическом варианте «рука рынка» как бы подталкивает куда всем надо, а тут она толкает совсем не туда. Не во всеобщее благо, а в перманентный кризис, которого при иных раскладах можно было бы избежать, что нам иллюстрирует и «дилемма заключённого», и гипотетический пример с конкуренцией фирм, и реальный пример с неизбежным завышением сроков разработки софта, о котором речь шла в предыдущей статье.

Рынок толкает игроков к равновесию Нэша, которое сколь угодно далеко может отстоять от их общего и личного блага.

В данном случае мы рассматривали только двух игроков и игру с двумя ходами, однако возможно и более широкое обобщение, которое как раз и является формулировкой равновесия Нэша:

Если в некоторой игре с произвольными количеством игроков и матрицей выигрышей существует такое состояние, что при выборе не соответствующего ему хода любым из игроков в отдельности его личный выигрыш уменьшится, то это состояние окажется «равновесным» для данной игры.

Кроме того, в ряде случаев ходы игроков будут иметь тенденцию стремиться к этому состоянию, даже если в этой игре есть другие состояния, в рамках которых выигрыш игроков в целом и/или по отдельности выше.

Приводить примеры такого общего случая способом, подобным ранее использованному, ощутимо тяжелее, поскольку добавление каждого игрока будет добавлять ещё одно измерение к матрице выигрышей. Однако об этом - позже.

В реальной жизни часто появляются вопросы, почему на одних рынках фирмы сотрудничают, а на других - агрессивно конкурируют; к каким средствам следует прибегать фирме, чтобы не допустить вторжения потенциальных конкурентов; как принимаются решения о цене; когда меняются условия спроса или издержек. Изучая эти проблемы, ученые используют теорию игр.
Первыми исследователями в области теории игр были американский математик Дж.-Ф. Нейман и австро-американский экономист О. Моргенштерн («Теория игр и экономическое поведение», 1944). Они распространили математические категории на экономическую жизнь общества, вводя понятия оптимальных стратегий, максимизации ожидаемой полезности, доминирование в игре (на рынке), коалиционные соглашения. Эти ученые оказали стимулирующее влияние на развитие социальных наук в целом, математической статистики, экономической мысли, в частности в области практического использования теории вероятности и теории игр в экономике.
Ученые стремились сформулировать основополагающие критерии рационального поведения участника рынка. Они различали два вида игр. Первый - «с нулевой суммой» - предусматривает такой выигрыш который формируется из издержек других игроков, то есть общая сумма выгоды и издержек всегда равна нулю. Другой вид - «игра с плюсовой суммой», когда индивидуальные игроки ведут борьбу за выигрыш, складывающийся из их ставок. Иногда этот выигрыш создается за счет наличия «выходного» (термин из карточной игры в бридж; так называют одного из игроков, который, делая ставки, не принимает участия в игре), совсем пассивного и часто такого, который служит объектом эксплуатации. И в том, и в другом случае игра неминуемо соединена с риском, поскольку каждый из ее участников, как считали Дж.-Ф. Нейман и О. Моргенштерн, «стремится максимально повысить функцию, переменные которой не контролируются». Если все игроки одинаково умелые, то решающим фактором становится случайность. Однако так происходит редко. Почти всегда важнейшую роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замысел противника и завуалировать свои намерения, а потом занять выгодные позиции и вынудить противника действовать в убыток себе. Важная роль отводится и «контрхитрости».
Во время игры много зависит и от рационального поведения игрока, то есть продуманного выбора и оптимальной стратегии. Разработке формализованного (в виде моделей) описания конфликтных ситуаций, в частности «формулы равновесия», то есть устойчивости решений противников в игре, занимался Дж.-Ф. Нэш
Нэш (Nash) Джон-Форбс (род в 1928) - американский экономист, лауреат Нобелевской премии (1994). Родился в г. Блуэфилд (штат Западная Вирджиния, США). Учился в Университете Карнеги-Меллона по специальности инженера-химика, но, увлекшись математикой, перевелся на математический факультет. Получил диплом бакалавра математики и одновременно магистра математики.
Поступил в аспирантуру по математической специализации Принстонского университета, где защитил докторскую диссертацию на тему «Некооперативные игры» (1950). В следующем году ее опубликовали отдельной статьей в журнале «Анналы математики». Когда обучался на старших курсах университета, принимал участие в исследовательской работе фирмы «RAND Corp.», которая финансировала ряд его разведывательных проектов в области теории игр, математической экономики и общей теории рационального поведения в игровых ситуациях.
В 1951-1959 гг. Дж.-Ф. Нэш - преподаватель Массачусетского технологического института. Одновременно ведет научно-исследовательскую деятельность. Ему удалось решить классическую проблему, связанную с дифференциальной геометрией.
Из-за тяжелой болезни он в течение 20 лет не мог работать.
В 70-е годы болезнь отступила. Но продуктивные научные результаты высшей пробы ему не удавались.
Дж.-Ф. Нэш продолжает исследования по математике. В целом он опубликовал 21 научную работу, 16 из них увидели свет до 1959 г.
Он член Национальной академии наук США, Эконометрического общества и Американской академии искусств и наук.
В классической теории игр кооперативные и бескоалиционные игры трактуются по-разному. Дж.-Ф. Нэш первым указал на отличие между ними и определил кооперативные игры как игры, допускающие свободный обмен информацией и принудительные условия между игроками, а бескоалиционные - как такие, которые не допускают свободного обмена информацией и принудительных условий. Некооперативной является такая игра, когда кооперирование между игроками не допускается вообще. В статьях «Точки равновесия в играх с N-числом участников» и «Проблема заключения сделок» (1951) он математически точно вывел правила действий участников (игроков), которые выигрывают в соответствии с выбранной стратегией. Каждый из игроков старается снизить степень риска с помощью самой выгодной стратегии, то есть путем постоянного приспособления к поведению тех, кто тоже хочет достичь наиболее лучших результатов.
Досконально изучив разные игры, создав серию новых математических игр и наблюдая за действиями участников в разных игровых ситуациях, Дж.-Ф. Нэш стремился понять, как функционирует рынок, как компании принимают решения, связанные с риском, почему покупатели действуют так, а не иначе. Ведь в экономике, как и в игре, руководители фирм должны учитывать не только последние, но и предыдущие шаги конкурентов, а также ситуацию на всем экономическом (игровом, например, шахматном) поле и другие факторы.
Известно, что субъекты экономической жизни - активные ее участники, которые на рынке в условиях конкуренции идут на риск, и он должен быть оправдан. Поэтому каждый из них, как и игрок, должен иметь свою стратегию. Именно из этого исходил Дж.-Ф. Нэш, разрабатывая метод, который позже назвали «равновесием Неша».
Равновесие Неша - совокупность стратегий или действий, согласно которым каждый участник реализовывает оптимальную стратегию, предвидя действия соперников.
«Стратегию» как основное понятие теории игр Дж.-Ф. Нэш разъясняет на основе «игры с нулевой суммой» («симметричная игра»), когда каждый участник имеет определенное количество стратегий. Выигрыш каждого игрока зависит от выбранной им стратегии, а также от стратегии его соперников. На этой основе строится матрица для нахождения оптимальной стратегии, которая при многократном повторении игры обеспечивает определенному игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш). Поскольку этому игроку неизвестно, какую стратегию выберет противник, ему самому целесообразнее выбрать стратегию, рассчитанную на самое неблагоприятное для него поведение противника (принцип «Гарантированного результата»). Действуя осторожно и считая конкурента сильным, этот игрок выберет для каждой своей стратегии минимально возможный выигрыш. И таким образом из всех минимально выигрышных стратегий выберет такую, которая обеспечит ему максимальный из всех минимальных выигрышей («максимин»).
Его противник, наверное, рассуждает так же. Он найдет для себя наибольшие проигрыши во всех стратегиях этого игрока, а потом из этих максимальных проигрышей выберет минимальный («минимакс»). При равенстве максимина минимаксу решения игроков будут устойчивыми, а игра будет иметь равновесие. Устойчивость (равновесие) решений (стратегий) заключается в том, что обоим участникам игры будет невыгодно отходить от выбранных стратегий. Когда же максимин не равен минимаксу, то решения (стратегии) обоих игроков, если они хотя бы в какой-то мере угадали выбор стратегии противника, будут неустойчивыми, неравновесными.
Значит, равновесие Нэша - результат, в котором стратегия каждого из игроков является лучшей среди других стратегий, принятых остальными участниками игры. Это определение основывается на том, что каждый из игроков изменением собственной роли не может достичь наибольшей выгоды (максимизации функции полезности), если другие участники твердо придерживаются собственной линии поведения.
Свою «формулу равновесия» Дж.-Ф. Нэш усилил показателем оптимального объема информации. Он вывел его из анализа ситуаций с полным информированием игрока о своих противниках и с неполным информированием о них. Переведя этот постулат с математического языка на язык экономической жизни, ученый ввел (как важный информационный элемент знания условий «внешней среды») неуправляемые переменные рыночных отношений.
Появление в науке равновесия Дж.-Ф. Нэша открыло многочисленные исследования с целью приближения его к реальной экономической действительности. На усовершенствование равновесия Дж.-Ф. Нэша были направлены исследования многих ученых. Среди них Дж.-Ч. Харшани.
Харшани (Harsanyi) Джон-Чарльз (1920-2000) - американский экономист, лауреат Нобелевской премии (1994). Родился в г. Будапеште (Венгрия), закончил Лютеранскую гимназию.
Получил высшее медицинское образование. В 1947 г., защитив докторскую диссертацию, начал работать преподавателем университетского Института социологии. Из-за антимарксистских взглядов в 1948 г. вышел в отставку, а потом выехал в Австралию. Там работал на заводе, одновременно обучался в Сиднейском университете, где изучал английский язык и экономику. В 1953 г. получил степень магистра.
С 1954 г. он лектор экономики Брисбенского университета. Через два года Дж.-Ч. Харшани был отмечен Фондом Рокфеллера, что давало ему право в течение следующих двух лет писать докторскую диссертацию в Стэнфордском университете.
В 1958 г. Дж.-Ч. Харшани возвращается в Австралию. Однако, почувствовав определенную изолированность, поскольку в этой стране в то время теория игр фактически не была известна, переехал в США, где работал профессором экономики Детройтского университета. В 1964 г. он профессор Экономического центра Волтера Хааса при университете Беркли в штате Калифорния.
Первые научные работы Дж.-Ч. Харшани опубликовал в начале 50-х годов, посвятив их вопросам использования функции полезности Неймана-Моргенштерна в экономике благосостояния и в этике. Дж.-Ч. Харшани является автором многих работ по утилитарной этике, экономики благосостояния, а также в сфере, граничащей между экономикой и моральной философией. В работе «Рациональное поведение и переговорное равновесие в играх и социальных ситуациях» (1977) он обосновывает «общую теорию рационального поведения», охватывающую «теорию индивидуального решения», вопросы деловой этики и теорию игр. Среди его книг «Эссе по этике, социальному поведению и научному объяснению» (1976), «Работы по теории игр» (1982), «Общая теория выбора равновесия в играх» (1988, совместно с Р.-Дж.-Р. Селтеном), которая в 2001 г. издана на русском языке, «Рациональное взаимодействие» и др.
Дж.-Ч. Харшани - почетный доктор Северно-Западного и почетный профессор Калифорнийского университетов (США).
Предметом исследования Дж.-Ч. Харшани были сложные ситуации, которые случаются при наличии асимметричной информации. В игре с полной информацией все игроки знают преимущества других, а в игре с неполной информацией они нуждаются в этих знаниях.
Поскольку толкование равновесия Нэша базировалось на прогнозе, что игроки знают преимущества других, все методы были недоступны для анализа игр с неполной информацией, несмотря на то, что такие игры более полно отражают стратегические взаимосвязи в реальном мире.
Ситуацию радикально изменили исследования Дж.-Ч. Харшани («Игры с неполной информацией, сыгранные байсианскими игроками»). Ученый исходил из того, что каждый игрок является одним из нескольких «типов», а каждый тип отвечает набору возможных преимуществ для игрока и вероятно распределяет почти всех на типы игроков. Значит, каждый игрок в игре с неполной информацией выбирает стратегию одного из таких типов. С согласованным требованием в отношении возможности распределения игроков Дж.-Ч. Харшани показал, что для каждой игры с неполной информацией существует эквивалентная игра с полной информацией. То есть он трансформировал игру с неполной информацией в игру с несовершенной информацией. В таком случае игра может регулироваться стандартными моделями.
Примером игры с неполной информацией может быть ситуация, когда частные фирмы и финансовые рынки точно не знают преимуществ центрального банка в отношении дилеммы между инфляцией и безработицей. Соответственно неизвестна и банковская политика в отношении будущих процентных ставок. Взаимодействие между будущими ожиданиями и политикой центрального банка можно проанализировать с помощью методики, предложенной Дж.-Ч. Харшани. В самом простом виде банк может или ориентироваться на борьбу с инфляцией и, значит, готовиться к осуществлению ограничительной политики с высокими процентными показателями, или будет бороться с безработицей с помощью низких процентных показателей.
Равновесие Нэша доработал и усовершенствовал, в частности относительно игр с неполной информацией, Р.-Дж.-Р. Селтен.
Селтен (Selten) Рейнхард-Джустус-Реджинальд (род в 1930) - немецкий экономист, лауреат Нобелевской премии (1994). Родился в г. Бреслау (ныне г. Вроцлав, Польша). В 1951 г. закончил в г. Мелсунген среднюю школу. Уже здесь заинтересовался математикой, впервые узнал о теории игр. Учился на математическом факультете Университета во Франкфурте-на Майне, окончил его в 1957 г. в течение десяти лет
Р.-Дж.-Р. Селтен работал там ассистентом. Этот период его жизни был насыщен активной экспериментаторской работой. В 1959 г. защитил докторскую диссертацию по математике. На протяжении 1969-1972 гг. он профессор экономики Свободного университета в Западном Берлине. Потом работал в Билефельдском университете, в котором продолжил экспериментальные исследования теории игр.
С 1984 г. Р.-Дж.-Р. Селтен - профессор кафедры экономики Боннского университета имени Фридриха-Вильгельма. Выступив организатором научно-исследовательского года (с 1 октября 1987 года по 30 сентября 1988 года) по теории игр в поведенческих науках, он сумел собрать большую международную группу экономистов, биологов, математиков, политологов, психологов и философов. Их общая работа изложена
в 4-х книгах «Модели равновесия игры» (1991). Р.-Дж.-Р. Селтен - основатель теории некооперативных игр.
В 1995 г. Р.-Дж.-Р. Селтен избран вице-президентом Европейской экономической ассоциации, а в 1997 г. - ее президентом. Он член Американских экономической ассоциации и эконометрического общества, входит в состав многих редколлегий научных журналов, является почетным иностранным членом Американской академии искусств и наук, членом Национальной академии наук США, а также почетным доктором Билефельдского, Бреславского, Грацского университетов, Университета Франкфурта-на-Майне и др.
В статье «Модель олигополии с инерцией спроса» (1965)
Р.-Дж.-Р. Селтен разработал «чистую стратегию» с интуитивным выбором. Последовательно усложняя и уточняя отмеченное «равновесие» дополнительными условиями для предыдущих договоренностей об игре, ученый развивал ее с точки зрения динамики и приближал к условиям реальной жизни. Он на противоположных примерах доказал, что даже точки равновесия могут вызвать иррациональное поведение. По мнению ученого, только специальный класс точек равновесия (он их назвал «истинными», или «совершенными точками равновесия») обеспечивает на самом деле рациональное поведение в бескоалиционной игре.
Понятие «равновесие Нэша» распространяется на теорию динамичных игр. В этом случае каждый участник выбирает стратегию (то есть план действий для каждого периода игры), которая максимизирует его выигрыш при заданных стратегиях других игроков. Основная проблема с динамичным равновесием Неша заключается в том, что в последнем периоде игры игроки могут вести себя иррационально. В тот момент, когда становится ясно, что данный период игры последний, ранее выбранное действие может оказаться иррациональным (не максимизирует выгоду). Усовершенствованное понятие равновесия, предложенное в 1975 г.
Р.-Дж.-Р. Селтеном, позволяет избавиться от непредвиденных предпосылок о стратегиях. Это понятие «совершенного равновесия Нэша», или совершенного равновесия субигры, предусматривает, что стратегии, выбранные игроками, являются равновесными, по Нешу, в каждой субигре (то есть в каждой однопериодной игре основной игры) независимо от того, какие действия были выполнены раньше.
Внедрение равновесия Нэша стало важным шагом в микроэкономике. Его использование способствовало углубленному пониманию развития и функционирования рынков, обоснованию стратегических решений, принимающихся менеджерами разных фирм. Важным является вклад Р.-Дж.-Р. Селтена, который усовершенствовал концепцию равновесия Нэша для анализа стратегического взаимодействия в динамике и использовал это для анализа конкуренции при условии небольшого количества участников. А методология анализа игры с неполной информацией Дж.-Ч. Харшани обеспечила теоретическую основу для исследования экономики информации.
Равновесием Нэша можно пользоваться при изучении процесса ведения политических переговоров и экономического поведения, в частности на олигополистических рынках (форма организации рынка, где существует несколько производителей однородного или дифференцированного товара). Именно Р.-Дж.-Р. Селтен выявил возможности использования моделей в политике. Его сотрудничество с американским ученым-политиком А. Пелмутером позволило разработать так называемый сценарий пакетного метода - систематизированный способ создания простых моделей игры конкретных международных конфликтов, благодаря которым можно осуществлять экспертные проверки эмпирических фактов.
Таким образом, дополненная теория игр дала экономике мощный математический инструментарий, который помог экономистам освободиться от зависимости от формального математического аппарата физики. Равновесие Нэша - это гибкий метод анализа разнообразных конкретных проблем и ситуаций на рынках.
Теория игр в дальнейшем была использована в исследованиях Томаса Шеллинга и Роберта Оманна. Их интересовал вопрос: «Почему некоторые группы людей, организаций и стран преуспевают в сотрудничестве, в то время как другие страдают от постоянных конфликтов?»
Шеллинг (Schelling) Томас Кромби (род. в 1921) - американский экономист, лауреат Нобелевской премии 2005 г. «За расширение понимания проблем конфликта и кооперации с помощью анализа в рамках теории игр». Профессор Мэрилендского университета. Президент Американской экономической ассоциации в 1991 г. Лауреат премии Фрэнка Сейдмана (1977). Основные произведения: «Стратегия конфликта» (The Strategy of Conflict, 1960); «Микромотивы и макровыбор» (Micromotives and Macrobehavior, 1978); «Выбор и последствия» (Choice and Consequence, 1985).
Использовал теорию игр для принятия рациональных решений в условиях недостаточной информации о возможных последствиях, как базу для объединения и исследования общественных наук в своей книге «Стратегия конфликта» (The Strategy of Conflict), опубликованной в 50-е годы прошлого века в условиях гонки вооружений.
В своей книге Шеллинг показывает, например, что способность принять ответные меры может быть иногда более полезной, чем способность выдержать атаку, или что возможное неизвестное возмездие часто более эффективно, нежели известное неотвратимое возмездие.
В книге Шеллинга рассматривались возможности решения стратегических конфликтов и способы избежать войны, однако его выводы могли объяснить и широкий диапазон явлений в сфере экономики и конкурентоспособности предприятий.
Р. Ауманн в свою очередь, посвятил свои исследования изучению теории бесконечных повторяющихся игр или того, каким образом можно поддерживать определенные результаты в отношениях в течение долгого периода времени.
Ауманн (Aumann) Исраэль Роберт Джон (также Оман) (род. в 1930) - израильский математик, профессор Еврейского университета в Иерусалиме, лауреат Нобелевской премии по экономике 2005 года «За расширение понимания проблем конфликта и кооперации с помощью анализа в рамках теории игр».
В 1983 году Оман был награждён премией Харви. В 1994 году профессор Оман был награждён Государственной премией Израиля по экономике вместе с профессором Михаэлем Бруно.
Р. Оман возглавлял Общество теории игр, а в начале 1990-х являлся президентом Израильского союза математиков. Кроме того являлся ответственным редактором «Журнала Европейского математического общества». Ауманн также консультировал Агентство США по контролю за вооружениями и разоружению. Он занимался теорией игр и её приложениями около 40 лет. Основные произведения: «Почти строго конкурентные игры» (Almost Strictly Competitive Games, 1961); «Смешанные и поведенческие стратегии в бесконечно расширенных играх» (Mixed and Behavior Strategies in Infinite Extensive Games, 1964).
Теория игр - это наука о стратегии, она изучает, как различные соперничающие группы - бизнесмены или любые другие сообщества - могут сотрудничать с получением идеального результата.
Оман специализировался в «повторяющихся играх», анализируя развитие конфликта во времени. Исследования Ауманна базировались на идее о том, что сотрудничество во многих ситуациях легче установить в ходе долгосрочных стабильных отношений.
Теория Ауманна объясняет, почему более трудно достичь сотрудничества между большим количеством участников, учитывая насколько часты, продолжительны и надежны контакты между ними и насколько каждый участник может предвидеть действия других.
Исследования направлены на объяснение таких экономических конфликтов, как ценовые и торговые войны, раскрытие механизма переговоров в различных условиях - от требований о повышении заработной платы до заключения международных торговых соглашений.

Что же делать участвующим в игре агентам? Как им определить, какая стратегия лучше других?

Давайте для начала поставим перед собой более скромную цель: определить, какие стратегии точно не подойдут.

Определение 1.2 . Стратегия агента называется доминируемой, если существует такая стратегия , что

В таком случае говорят, что доминирует над .

Иначе говоря, стратегия доминируема, если существует другая стратегия, которая не хуже в каждой точке, при любых возможных комбинациях стратегий других агентов. Значит, нет вообще никакой причины предпочитать , и ее можно просто отбросить при анализе.

Пример 1.4 . Вспомним пример 1.2, в котором полковник Блотто собирался расставить войска на поле . Если проанализировать матрицу из примера 1.2, станет очевидным, что стратегии , и доминируются другими: например, стратегия окажется лучше любой из них. Разумеется, то же самое верно и для противника Блотто. Таким образом, матрица существенно сократится.


Конец примера 1.4 .

Пример 1.5 . В примере 1.3, в котором мы обсуждали конкуренцию по Курно, было очень много доминируемых стратегий. Таковыми были все стратегии : они гарантированно приносили неположительную прибыль , в то время как нулевая стратегия (, ничего не производить) гарантирует нулевую прибыль . Поэтому сразу можно было ограничиться анализом квадрата в качестве множества стратегий.

Конец примера 1.5 .

Правда, стоит заметить, что легко построить пример, в котором любая стратегия доминируема. Это будет значить, что некоторые стратегии эквивалентны, то есть доминируют друг над другом. В таких случаях хотя бы одну из них стоит оставить, а то совсем не из чего будет выбирать.

Продолжаем разговор. После доминируемых стратегий логично будет ввести доминантные стратегии .

Определение 1.3 . Стратегия агента называется доминантной , если всякая другая стратегия ею доминируется, то есть

Доминантная стратегия для агента - настоящее счастье. Ему вообще думать не надо: достаточно выбрать доминантную стратегию, все равно никакая другая ни при каком исходе ничего лучшего не даст.

Более того, если у всех агентов есть доминантные стратегии , то анализ такой игры закончится, не успев начаться. Можно с уверенностью сказать, что все агенты выберут свои доминантные стратегии .

Определение 1.4 . Равновесие в доминантных стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента стратегия является доминантной.

Такое равновесие является самым устойчивым из всех. В следующей лекции мы приведем пример из теории экономических механизмов, в котором возникает такое равновесие - так называемый аукцион Викри (см. теорему 2.1.

Но, к сожалению, счастье достижимо далеко не всегда. Ни в примере 1.1, ни в примере 1.2, ни в примере 1.3 никакого равновесия в доминантных стратегиях не получалось. Для каждой стратегии игрока там существовал профиль стратегий других игроков , в котором игроку было бы выгодно сменить на ту или иную .

Равновесие Нэша

В предыдущем параграфе мы обсудили, что если у агента есть доминантная стратегия , то ему вообще размышлять и беспокоиться не о чем: он может просто выбирать эту стратегию. Но что же делать участвующим в игре агентам, когда таких стратегий нет и не предвидится?

Тогда приходится учитывать не только свои собственные стратегии, но и стратегии других агентов. Учет этот приведет к понятию равновесия, сформулированному в 1950 году Джоном Нэшем .

Определение 1.5 . Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий , что для всякого агента выполняется следующее условие:

Иначе говоря, как и прежде, агенту невыгодно отклоняться от избранной стратегии . Но теперь ему это невыгодно делать не абстрактно, при любом выборе стратегий у других агентов, а только в конкретном профиле стратегий .

Пример 1.6 . Продолжаем рассматривать беднягу Блотто. Матрица игры полковника без доминируемых стратегий была приведена в примере 1.4. Из матрицы легко видеть, что если один игрок выбирает стратегию , то от выбора другого уже ничего не зависит, то есть можно сказать, что другому тоже нет резона отклоняться от стратегии . Все это значит, что для данной игры профиль стратегий находится в равновесии Нэша.

Конец примера 1.6 .

Приведем и непрерывный пример - поверьте, нас еще ждут подобные рассуждения, и пора привыкать к чуть более серьезному анализу.

Пример 1.7 . Вернемся к анализу конкуренции по Курно из примера 1.3. На этот раз мы не будем ничего упрощать: пусть цена задается неизвестной функцией , а себестоимость производства для каждой фирмы - неизвестной функцией . Чтобы найти равновесие Нэша, найдем функцию лучшего ответа. Прибыль компании определяется как

Чтобы определить максимум функции для фиксированного , нужно просто найти производную

и приравнять ее к нулю. Соответственно, равновесие Нэша достигается там, где обе фирмы выдают оптимальный ответ на стратегию противника, то есть на решениях следующей системы дифференциальных уравнений :


Оставим читателю удовольствие проверить, что в рассмотренном в примере 1.3 частном случае равновесием Нэша действительно будет точка пересечения прямых на рис. 1.1 .

Конец примера 1.7 .

В определении 1.5 упоминался странный термин " чистые стратегии ": а какими еще они бывают? Оказывается, что стратегии бывают не только чистыми, но и смешанными. Смешанные стратегии - логичное расширение понятия стратегии: давайте разрешим игроку не только выбирать одну из , но и делать из них более или менее случайный выбор.

Определение 1.6 . Смешанная стратегия для игрока в стратегической игре - это распределение вероятностей , где - множество всех распределений вероятностей над .

Смешанную стратегию также можно рассматривать как задание весов для каждой стратегии так, чтобы сумма (в непрерывном случае - интеграл ) всех весов была равна 1.

Бывают игры, где нет равновесий Нэша для чистых стратегий . Но оно всегда (в конечном случае) есть в смешанных стратегиях .

Пример 1.8 . Вспомним игру "камень-ножницы-бумага", матрицу которой мы уже выписывали в примере 1.1.

Очевидно, что никакого равновесия Нэша в чистых стратегиях здесь нет: для любой стратегии найдется кому ее опровергнуть. Но равновесие Нэша в смешанных стратегиях здесь имеется. Предположим, что второй игрок выбирает камень, ножницы или бумагу с вероятностью , а первый выбирает их с вероятностями , и . Тогда первый игрок выигрывает с вероятностью

а также проигрывает и делает ничью с той же вероятностью. Иначе говоря, если противник выбирает стратегию равновероятно, для игрока все стратегии эквивалентны. Поскольку игра симметрична, получается, что профиль смешанных стратегий

находится в равновесии.

Конец примера 1.8 .

Доказательство того, что равновесие в смешанных стратегиях всегда существует, следует из теоремы Какутани о неподвижной точке [ , ].

Теорема 1.1 (Какутани) Пусть - непустое выпуклое компактное подмножество евклидова пространства , а - многозначная функция на с замкнутым графиком, такая, что множество непусто, замкнуто и выпукло для всех . Тогда у есть