Информационно развлекательный портал
Поиск по сайту

Известно товарищи что существуют общие закономерности. Что такое «доктрина Брежнева» и как она проявлялась? Рубеж конца семидесятых

Температурные пределы воспламенения. Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная нижнему концентрационному пределу воспламенения, называется нижним температурным пределом воспламенения (НТПВ).

Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная верхнему концентрационному пределу воспламенения, называется верхним температурным пределом воспламенения (ВТПВ).

Например, для ацетона температурные пределы равны: НТПВ 253 К, ВТПВ 279 К. При этих температурах образуются концентрации паров соответственно 2,6 и 12,6 % (об.).

Температурные пределы воспламенения используют для оценки пожарной опасности жидкостей, при расчете безопасных режимов работы закрытых технологических аппаратов и складских емкостей с жидкостями и летучими твердыми веществами. Для пожаробезопасности технологического процесса, связанного с применением жидкостей, последний ведут при температурах ниже НТПВ на 10 К или выше НТПВ на 15 К. Для многих жидкостей температурные пределы определены и результаты сведены в справочные таблицы.

Температурные пределы могут быть рассчитаны. Расчетный метод применяют для ориентировочного определения температурных пределов воспламенения в целях нахождения предполагаемых температурных пределов перед началом экспериментального их определения, а также для ориентировочного расчета безопасных режимов работы технологической аппаратуры на стадии предпроектной проработки технологического процесса в отсутствие экспериментальных данных. Температурные пределы воспламенения можно вычислить, используя данные о давлении насыщенного пара при различных температурах, по формуле

где Р 1 , Р 2 – ближайшие к Р п меньшее и большее табличные значения давления пара, соответствующие температурам Т 1 и Т 2 .

Температурные пределы воспламенения можно рассчитать по экспериментально определенным концентрационным пределам. Если вычисленная величина не совпадает с экспериментальной, то в качестве действительной принимают более низкое значение для НТПВ и более высокое для ВТПВ. Вычисляют температурные пределы следующим образом.

Определяют давление паров Р н и Р в вещества, соответствующего нижнему и верхнему концентрационным пределам паров в воздухе

Если Р общ = 101080 Па, то Р в =1010 С в и Р н = 1010 С н , где Р н и Р в – экспериментальные значения нижнего и верхнего концентрационных пределов воспламенения паров в воздухе, % (об.).

По найденным значениям Р н и Р в вычисляют температурные пределы воспламенения, используя приведенные выше формулы и табличные данные зависимости давления пара от температуры.

Температура вспышки. Температура вспышки – самая низкая температура (в условиях специальных испытаний) вещества, при которой над поверхностью его образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования еще недостаточна для последующего горения.

Этот термин применяют для характеристики горючих жидкостей и он вошел во многие стандарты. Согласно ГОСТ 12.1.004-90 (Пожарная безопасность. Общие требования), жидкости, способные гореть, делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). ЛВЖ – это жидкости, имеющие температуру вспышки не выше 61 0 С (в закрытом тигле) или 65 0 С (в открытом тигле). ГЖ – это жидкости, имеющие температуру вспышки выше 61 0 С (в закрытом тигле) или 66 0 С (в открытом тигле).

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или выше -13 0 С до 27 0 С в открытом тигле;

III разряд –ЛВЖ, опасные при повышенной температуре воздуха, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше 23 0 С до 61 0 С в закрытом тигле или выше 27 0 С до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавливают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. температура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменением физических свойств членов гомологического ряда (табл. 5.2).

Из данных табл. 5.2 видно, что температура вспышки повышается с увеличением молекулярной массы, температуры кипения и плотности. Эти закономерности в гомологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо отметить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространять на жидкости, принадлежащие к разным классам органических соединений.

Таблица 5.2

Физические свойства спиртов

Молекулярная масса

Плотность, кг/м 3

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н -Пропиловый С 3 Н 7 ОН

н -Бутиловый С 4 Н 9 ОН

н- Амиловый С 5 Н 11 ОН

При смешении горючих жидкостей с водой или четыреххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки:

растворе, % …………………

Температура вспышки, 0 С

метилового спирта …………

этилового спирта …………..

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25%.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения.


Такую температуру жид-кости принято называть температурой воспламенения. Для ЛВЖ она отличается на 1 – 5 0 С от температуры вспышки, а для ГЖ – на 30 – 35 0 С. При температуре воспламенения жидкостей устанавливается постоянный (стационарный) процесс горения.

5.3. Процесс горения жидкостей. Скорость выгорания

Горение жидкостей сопровождается не только химической реакцией (взаимодействие горючего вещества с кислородом воздуха), но и физическими явлениями, без которых горение невозможно. Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло из зоны горения к поверхности жидкости передается излучением. Передача тепла теплопроводностью невозможна, так как скорость движения паров от поверхности жидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, так как поток паров в объеме пламени направлен от поверхности менее нагретой (жидкость) к поверхности более нагретой.

Количество тепла, излучаемое пламенем, зависит от его степени черноты и температуры. Степень черноты пламени определяется концентрацией углерода, выделяющегося в пламени жидкости при горении жидкости. Например, степень черноты пламени при горении нефти и нефтепродуктов в больших резервуарах близка к единице.

Количество тепла, поступающее от факела Q р в единицу времени на единицу поверхности жидкости, можно определить по формуле

,

где e – степень черноты; s – постоянная Стефана – Больцмана, равная 2079×10 -7 кДж/(м 2 ×ч×К 4); Т ф – температура пламени факела, К; Т ж – температура поверхности жидкости, К.

Это тепло расходуется на испарение жидкости , ее нагревание от начальной температуры до температуры поверхности , т.е. прогрев жидкости в глубину:

,

где r – теплота испарения, кДж/ч; r – плотность, г/см 3 ; v – линейная скорость горения, мм/ч; u – скорость прогрева жидкости в глубину, мм/ч; Т п – температура поверхности жидкости, К; Т 0 – начальная температура жидкости, К; с – удельная теплоемкость жидкости, Дж/(г×К).

Таким образом,

В установившемся процессе горения (т.е. при постоянной температуре пламени) наблюдается равновесие между количеством сгоревшего в зоне горения (пламени) вещества и массой пара, поступающего в пламя. Это определяет постоянную скорость испарения и, следовательно, выгорание жидкости в течение всего процесса горения.

Скорость горения жидкостей. Различают две скорости горения жидкостей – массовую и линейную. Массовой скоростью G называется масса жидкости (кг), вы-горающей в единицу времени (ч, мин) с единицы поверхности. Под линейной скоростью v горения жидкости понимают высоту ее слоя (мм, см), выгорающего в единицу времени:

где r — плотность жидкости, кг/м 3 ; h – высота слоя сгоревшей жидкости, мм; t — время горения.

Зная или определив линейную скорость выгорания, можно вычислить массовую и наоборот.

Скорость горения жидкостей непостоянна и изменяется в зависимости от начальной температуры, диаметра резервуара, уровня жидкости в резервуаре, скорости ветра и других факторов. Для горелок малых диаметров скорость сгорания сравнительно велика. С увеличением диаметра скорость сгорания сначала уменьшается, а затем возрастает, пока не достигнет определенного постоянного значения для данной жидкости. Такая зависимость обусловлена различными причинами. На скорость горения в малых горелках существенно влияют стенки, так как пламя, соприкасаясь с ними, нагревает верхнюю кромку до высокой температуры. От верхней кромки тепло теплопроводностью распространяется по всей стенке и передается жидкости. Этот дополнительный приток тепла со стороны стенки увеличивает скорость испарения жидкости. Увеличение скорости горения с увеличением диаметра связано с переходом от ламинарного режима горения к турбулентному. Этот переход сопровождается уменьшением полноты сгорания, а большое количество выделяющейся сажи способствует увеличению степени черноты пламени, что приводит к увеличению теплового потока от пламени. При турбулентном горении обеспечивается наиболее быстрый отвод паров от поверхности жидкости, увеличивается скорость испарения.

Скорость горения в больших резервуарах увеличивается с ростом диаметра незначительно. Считают, что скорость горения в резервуарах диаметром больше 2 м практически одинакова.

Сильный ветер способствует смешиванию паров с воздухом, повышению температуры пламени, в результате чего интенсивность горения увеличивается.

По мере снижения уровня жидкости в резервуаре увеличивается расстояние от пламени до поверхности жидкости, поэтому уменьшается приток тепла к жидкости. Скорость сгорания же постепенно уменьшается и при некотором критическом расстоянии поверхности жидкости от кромки борта может наступить самотушение. Это расстояние называется критической высотой ; она увеличивается с увеличением диаметра резервуара. Для больших резервуаров зависимость скорости горения от высоты свободного борта практического значения не имеет, так как высота стандартных резервуаров всегда значительно меньше критической высоты. Так, расчет показывает, что само- тушение в резервуаре диаметром 23 м может наступить при высоте его более 1 км. Действительная высота резервуара 12 м.

ВСПЫШКА И ТЕМПЕРАТУРА ВСПЫШКИ . Горючие вещества, особенно жидкие, обнаруживают в зависимости от условий, в которых они находятся, три раздельных между собой типа сгорания: вспышку , воспламенение и возгорание ; как частный случай вспышки можно рассматривать взрыв . Вспышка представляет собой быстрое, но сравнительно спокойное и кратковременное сгорание смеси паров горючего вещества с кислородом или воздухом, происходящее от местного повышения температуры, которое м. б. вызвано электрической искрой или прикосновением к смеси горячего тела (твердого тела, жидкости, пламени). Явление вспышки - подобно взрыву, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия. От воспламенения вспышка отличается своей кратковременностью. Воспламенение , возникая, как и вспышка, от местного повышения температуры, может длиться затем до исчерпания всего запаса горючего вещества, причем парообразование происходит за счет тепла, выделяющегося при сгорании. В свою очередь, воспламенение отлично от возгорания , поскольку это последнее не требует дополнительного местного повышения температуры.

Все типы сгорания связаны с распространением тепла из участка, где произошло сгорание, в прилежащие области горючей смеси. При вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет, и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении парообразующее вещество бывает доведено до такой температуры, что теплоты от сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси. Начавшееся воспламенение, дойдя до поверхности горючего вещества, становится стационарным, пока горючее вещество не сгорит нацело; но, однако, будучи прекращено, воспламенение уже не возобновляется без приложенного извне местного перегрева. Наконец, при возгорании горючее вещество находится при температуре, достаточной не только для парообразования, но и для вспышки непрерывно образующейся горючей смеси, без дополнительного местного нагрева. В этом последнем случае горение, если бы оно было прекращено, например, пресечением свободного доступа кислорода, возникает самопроизвольно после устранения препятствующей причины: самопроизвольно происшедшая вспышка перейдет далее в воспламенение.

Возможность горения того или другого типа зависит прежде всего от химического состава горючей смеси, т. е. химической природы горючих паров, содержания кислорода в смеси, от содержания посторонних безразличных примесей, как: азот , водяные пары, углекислота, и от содержания примесей, активно противодействующих реакции горения, например, отрицательных катализаторов, глушителей и т. д. А так как все типы процесса горения начинаются со вспышки, то рассмотрение вспышки в ее зависимости от химического состава смеси имеет общее значение для всех случаев. Заранее очевидно, что при данных условиях давления и температуры смесь горючего пара или газа с кислородом (или воздухом) может подвергаться вспышке не в любой пропорции и что очень малое или, наоборот, слишком большое содержание горючего в смеси исключает вспышку. Кроме того, различные горючие пары требуют для своего сгорания различного количества кислорода, и потому «пределы вспышке» смесей из кислорода и горючих паров всегда зависят от рода горючего пара. Способ подсчета этих пределов для химически индивидуальных веществ был указан Торнтоном. Если обозначить через N число атомов кислорода, необходимого для полного сожжения М молекул горючего вещества в газо- или парообразном виде, то, по Торнтону, пределы смесей, сохраняющие способность вспышки, могут быть выражены:

Если в состав смеси входит не чистый кислород, а воздух, то необходимо учесть, что 1 объем кислорода содержится в 5 (точнее, в 4,85) объемах воздуха. Так, например, горение метана можно выразить уравнением:

так что для этого случая М = 1 и N = 4. Отсюда состав верхнего предела для смеси метана с кислородом определяется формулой:

отсюда легко подсчитать, что верхний предел вспышки для смеси метана с воздухом определяется отношением 1:5, т. е. при содержании в смеси 1/6 метана, или 16,7% (опыт дает 14,8%). Для нижнего предела аналогично имеем состав смеси СН 4 (1 объем) + 6 О (3 объема), что отвечает содержанию метана в смеси с воздухом 1/16, или 6,25% (опыт дает 5,6%). Аналогично для пентана, C 6 H 12 , получаем М = 1 и N = 16, откуда для верхнего предела вычисляется 1/21, или 4,75%, пентана в смеси с воздухом (опыт дает 4,5%), для нижнего же 1/76, или 1,35% (опыт дает 1,35%). Так как величины М и N в формулах Торнтона пропорциональны парциальным упругостям пара горючего вещества и кислорода, то, очевидно, вспышка возможна лишь в определенных пределах парциального давления паров, причем пределы ее изменяются с температурой. Очевидно также, что вспышка становится возможной, когда упругость насыщенного пара достигнет известного значения. Зная это значение и зависимость упругости пара от температуры, можно вычислить температуру, при которой возможна вспышка. Исследования Э. Макка, Ч. Э. Бурда и Г. Н. Боргема показали, что для большинства веществ наблюдается при нижнем пределе вспышке достаточно хорошее совпадение температуры вычисленной с температурой непосредственно наблюденной.

Смеси паров также в некоторых случаях подчиняются указанному способу определения температуры, при которой возможна вспышка. Если это - смесь нафтенов С n Н 2 n , то во всех гомологах отношение содержания С к Н одно и то же, так что средний молекулярный вес смеси дает возможность определить число групп СН 2 и, следовательно, количество потребного для сгорания их О. Кроме того, температура вспышки представляет здесь почти линейную функцию молекулярного веса и связанной с ним температурой кипения. Для смеси метановых углеводородов С n Н 2 n+2 (например, газолин) число N тоже вычисляется из среднего молекулярного веса. После вычитания из него 2 (для двух водородных атомов у конца цепи) и деления остатка на 14 (сумма атомных весов группы СН 2) получается число этих групп, отвечающее среднему молекулярному весу смеси. Если это число умножить на 3 и прибавить 1, для двух непринятых раньше во внимание атомов водорода, то получается N. Так, для газолина средний молекулярный вес 107 и поэтому:

С возрастанием давления смеси парциальная упругость горючего пара повышается, а потому повышается и температура вспышки. Увеличение давления на 1 мм повышает температуру вспышки погонов мексиканской нефти на 0,033°, как показал Ломан, исследовавший вспышку на разных высотах (по данным Гольде, работавшего с другими материалами, это изменение составляет 0,036°). Специально для керосина имеется поправочная таблица, позволяющая приводить температуру вспышки, найденную при любом барометрическом давлении, к нормальному. Кроме атмосферного давления, температура вспышки изменяет также влажность воздуха, поскольку парциальная упругость водяного пара понижает давление горючего компонента смеси.

Вспышка испаряющейся жидкости . Вспышка готовой смеси газов или паров представляет случай простейший. Более сложно протекает явление вспышки, когда вспыхивающая смесь возникает непрерывно от испарения тут же находящейся жидкости. Вспышка газовой смеси зависит также от многих условий опыта: увеличение ширины взрывной бюретки, перенесение взрывающей искры сверху вниз, увеличение емкости сосуда, удлинение искрового промежутка и т. д. - все это расширяет пределы возможной вспышки. Кроме того, некоторые, пока еще недостаточно исследованные, примеси могут существенно изменять эти пределы. Вопрос о вспышке тумана из распыленной горючей жидкости исследован Гидером и Вольфом. Нижний предел вспышки оказался тут тем же, что и для смеси с соответственным паром; но скорость распространения взрыва в тумане меньше, а потребление кислорода больше, чем в случае паров. Состояние поверхности жидкости, объем ее, расстояние до зажигающего пламени, быстрота обмена наружного воздуха и образующихся паров, быстрота испарения, а, следовательно, мощность нагревающего жидкость источника тепла, теплопроводность стенок сосуда, теплопроводность и вязкость самой жидкости, потеря сосудом тепла через лучеиспускание и т. д. - все это может значительно изменить наблюдаемую температуру вспышки и помимо факторов, указанных при обсуждении вспышки газовой смеси. Поэтому о вспышке, как о константе, можно говорить только условно, ведя опыт лишь в точно определенных условиях. Для химически индивидуальных веществ Орманди и Кревен установили пропорциональность температур вспышки и кипения (в абсолютных градусах):

где коэффициент k для нижнего предела вспышки равен 0,736, а для верхнего 0,800; Т° кип. должна быть определяема по начальному показанию термометра. Формула Орманди и Кревена до известной степени распространяется также на очень узкие фракции разного рода смесей. Однако для тех горючих жидкостей, с которыми в большинстве случаев приходится иметь дело на практике, т. е. для сложных смесей, простых зависимостей, определяющих температуру вспышки, пока не найдено. Даже двойные смеси не подчиняются в отношении вспышки правилу смешения, и низко вспыхивающий компонент значительно понижает вспышку другого, высоко вспыхивающего, тогда как этот последний мало повышает вспышку первого. Так, например, смесь равных количеств фракций (бензинового и керосинового компонентов) удельного веса 0,774 со вспышкой при 6,5° и удельным весом 0,861 со вспышкой при 130° обладают температурой вспышки не при 68,2°, как следовало бы ожидать по правилу смешения, а при 12°. При 68,2° вспыхивает смесь, содержащая лишь около 5% более легкого компонента, так что эта небольшая примесь понижает температуру вспышки более тяжелого компонента на 61,8°. Впрочем, результат испытания подобных смесей в открытом тигле, где не могут накопляться пары летучего компонента, не так искажается от примесей, особенно если разница вспышек в обоих компонентах значительна. В некоторых случаях такие смеси могут давать двойную вспышку при разных температурах.

Воспламенение . Температура воспламенения превышает температуру вспышки тем значительнее, чем выше сама температура вспышки. Как показали Кюнклер и М. В. Бородулин, при нагревании нефтяных продуктов от вспышки до воспламенения испытуемое вещество теряет около 3% своего веса, причем эта потеря относится к более легким погонам. Поэтому присутствие небольших количеств (не более 3%) легких погонов, существенно искажающее температуру вспышки вещества, не мешает точному измерению температуры воспламенения. Наоборот, присутствие в масле более 10% бензина делает температуру воспламенения неопределенной.

Самовозгорание , или самовоспламенение, смеси горючих паров происходит тогда, когда тепловыделение окисляющейся системы уравнивается с теплопотерей, и потому даже ничтожное ускорение реакции ведет к бурному процессу. Очевидно, граница температурного равновесия изменяется при том же составе смеси в зависимости от массы ее, теплопроводности и теплоиспускающей способности оболочки, содержащей горючую смесь, от температуры окружающей среды, присутствия катализаторов в смеси и целого ряда других условий, так что температура самовозгорания имеет определенное значение лишь при строго определенных условиях. Зависимость температуры самовозгорания от присутствия или отсутствия катализирующей платины доказывается, например, данными Э. Констана и Шлёнфера (табл. 1).

Зависимость температуры самовозгорания от присутствия в смеси кислорода или воздуха показана данными тех же исследователей (табл. 2).

Исследование С. Гвоздева над самовозгоранием различных веществ в кварцевых и железных трубках в атмосфере кислорода и воздуха дало результаты, которые сопоставлены в табл. 3.

В отношении к самовозгоранию опытом установлены некоторые общие положения, а именно: 1) давление понижает температуру самовозгорания; 2) присутствие влаги тоже понижает температуру самовозгорания; 3) в воздухе температура самовозгорания выше, чем в кислороде; 4) температура самовозгорания в открытой трубке выше, чем в закрытом пространстве; 5) температура самовозгорания углеводородов циклогексанового ряда ниже, чем у ароматических, и близка к температуре самовозгорания предельных углеводородов; 6) для ароматических углеводородов температуры самовозгорания в воздухе и кислороде близки между собой; 7) некоторые вещества (скипидар, спирты) дают при последовательном ряде испытаний весьма колеблющиеся значения температуры самовозгорания (особенно скипидар). Особый случай самовозгорания представляют волокнистые материалы (хлопок, начески, шерсть, тряпье), пропитанные маслами; легкость самовозгорания в таких случаях связана с температурой самовозгорания соответственных масел. Явления этого рода имеют столь существенное практическое значение, что разработаны специальные методы и приборы для испытания способности масел к самовозгоранию в присутствии хлопка.

Измерение температур вспышки и воспламенения . Находясь в тесной связи с молекулярным весом и температурой кипения, вспышка и воспламенение косвенно связаны с этими константами и потому характеризуют данное вещество. Им принадлежит еще большее значение на практике, при суждении о степени огнеопасности вещества в данных условиях пользования им и, следовательно, для установления предупредительных мер, - обстоятельство, особенно важное в промышленности (нефтяной, деревоперерабатывающей, спиртовой, лаковой, маслобойной) и вообще во всех случаях, где имеют дело с летучими растворителями.

Необходимость измерять температуры вспышки и воспламенения повела к конструкции многочисленных, нередко дорогих, специальных приборов и к разработке инструкций для работы с ними, причем в отдельных отраслях промышленности, применительно к отдельным классам веществ, даже родственных между собой, построены и стандартизованы различные приборы с различными инструкциями. Не имея под собой рациональных оснований, меняясь от страны к стране, от одной промышленной организации к другой и от одного класса веществ к другому, способы измерения вспышки и воспламенения дают результаты, согласуемые между собой лишь очень приблизительно. Главные типы приборов для измерения температуры вспышки бывают: а) с открытым сосудом, б) с закрытым сосудом.

а) Приборы с открытым сосудом . Измерение температуры вспышки первоначально производилось наливанием испытуемой жидкости на воду, содержащуюся в чашке; эта последняя затем подогревалась. Позднее вспышку в открытом сосуде стали производить гл. обр. в отношении трудно вспыхивающих веществ, например, смазочных масел, газовых каменноугольных смол, различных мастик и т. д. Таковы приборы Маркуссона, Бренкена, Кливленда, Мура, де-Граафа, Круппа, отличающиеся между собой главным образом размерами, формой и материалом тигля, конструкцией обогревающих частей и способом ведения нагрева. Подробности обращения с этими приборами можно найти в специальных руководствах. Следует отметить, что выступание ртутного столбика термометра за пределы тигля и нахождение его в среде с различными в разных местах температурами ведут к необходимости в значительной поправке, возрастающей с возрастанием температуры вспышки или воспламенения, - например, до 10-14°, когда температура вспышки 300°. Истинная температура вспышки вычисляется по формуле:

где θ - непосредственно наблюденная температура вспышки (или воспламенения), n - число градусов части ртутного столбика, находящейся вне испытуемой жидкости, a t" - температура, соответствующая середине выступающей части ртутного столбика; хотя t" м. б. вычислена, но обычно ее измеряют непосредственно, с помощью дополнительного термометра. Для быстрого нахождения этой поправки служит специальная таблица. Особая таблица служит также для поправок на барометрическое давление, особенно важных при определении температуры вспышки легко воспламеняющихся жидкостей (керосин); для последних обычно применяют приборы с закрытым сосудом.

б) Приборы с закрытым сосудом . Из различных приборов этого рода наиболее известны приборы Абеля и Мартенса (оба усовершенствованные Пенским), Эллиота (нью-йоркский), Таг. В СССР и некоторых других странах (Германия, Австрия) употребляется почти исключительно прибор Абеля-Пенского для низкокипящих жидкостей (керосин) и прибор Мартенса-Пенского - для высококипящих жидкостей (масла). Рабочая часть этих приборов состоит из строго нормированного тигля, плотно прикрытого крышкой, в которой через определенные промежутки времени открывают окошечко для введения в тигель маленького пламени. В тигле имеется термометр и мешалка. Обогрев тигля, а в некоторых случаях, наоборот, охлаждение, ведется в строго определенных условиях, при помощи специальных бань. Приборы, принятые в разных странах для испытания керосина, и нормальные температуры вспышки при соответствующих испытаниях сопоставлены в табл. 4.

Показания различных приборов в определении температуры вспышки всегда расходятся между собой, причем определение вспышки в открытом сосуде всегда дает температуру более высокую, чем в закрытом приборе. Обусловливается это тем обстоятельством, что в закрытых приборах пары постепенно накопляются в приборе, тогда как в открытом сосуде они все время диффундируют в окружающую атмосферу. О размерах этих расхождений можно судить на основании данных табл. 5.

Из этой таблицы видно также, что разница между температурой вспышки в закрытом и открытом приборах увеличивается с повышением температуры вспышки, а также, как показывают последние два примера, - с увеличением неоднородности продукта. В связи с этим наличие большой разницы в температуре вспышки для одного и того же вещества при определении его вспышки в открытом и закрытом приборах указывает либо на примесь к тяжелому веществу, например, маслу, какого-либо легкого вещества (бензина, керосина) либо на некоторые дефекты перегонки (разложение с образованием легко летучих продуктов). Таким образом сопоставление температуры вспышки одного и того же вещества в открытом и закрытом приборах может служить для контроля правильности как употребления, так и производства смазочных масел.

ГОСТ ISO 2719-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса

Petroleum products. Methods for determination of flash point in Pensky-Martens closed cup


МКС 75.080

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4 стандарта, который выполнен ОАО "ВНИИ НП"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 ноября 2013 г. N 61-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова

Молдова-Стандарт

Россия

Росстандарт

Украина

Минэкономразвития Украины

4 Настоящий стандарт идентичен международному стандарту ISO 2719:2002* Determination of flash point - Pensky-Martens closed cup method (Определение температуры вспышки. Метод Пенски-Мартенса в закрытом тигле).
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

Настоящий стандарт разработан на основе ГОСТ Р ЕН ИСО 2719-2002 "Нефтепродукты. Методы определения температуры вспышки в закрытом тигле Пенски-Мартенса".

Стандарт ISO 2719:2002 разработан Комитетом ISO/TC 28 "Нефтепродукты и смазочные материалы".

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия - идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 724-ст межгосударственный стандарт ГОСТ ISO 2719-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Июнь 2014 г.


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет


Предупреждение - В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

1 Область применения

1 Область применения

1.1 Настоящий стандарт устанавливает два метода (А и В) определения температуры вспышки горючих жидкостей, жидкостей, содержащих суспендированные твердые вещества, жидкостей, склонных к образованию пленки на поверхности в условиях испытания, и других жидкостей в аппарате Пенски-Мартенса с закрытым тиглем. Методы распространяются на жидкости, температура вспышки которых выше 40 °С.

Примечание 1 - Обычно испытание технических керосинов с температурой вспышки выше 40 °С проводят по стандарту , но можно провести их испытания и по настоящему стандарту. Испытания неиспользованных смазочных масел обычно проводят по стандарту .

1.2 Метод А применяют для определения температуры вспышки лаков и красок, которые не образуют пленку на поверхности, товарных смазочных масел и других нефтепродуктов, для которых не пригоден метод В.

1.3 Метод В применяют для определения температуры вспышки остаточных жидких топлив, разжиженных битумов, отработанных смазочных масел, жидкостей, склонных к образованию пленки на поверхности; жидкостей, содержащих суспендированные твердые вещества, и высоковязких жидких продуктов, таких как растворы полимеров и клейкие вещества.

Примечание 2 - Для сравнения температур вспышки неиспользованных и отработанных смазочных масел в рамках программы исследований смазочных материалов можно провести испытания отработанных смазочных масел по методу А. Однако данные по прецизионности для таких продуктов установлены только для метода В.

1.4 Настоящий стандарт не распространяется на лаки на водной основе и жидкости, содержащие следы низкокипящих веществ.

Примечание 3 - Испытания лаков на водной основе проводят по стандарту . Жидкости, содержащие следы низкокипящих веществ, можно испытать по стандарту или стандарту .

Примечание 4 - Данные по прецизионности действительны только для интервалов температур вспышки, приведенных в разделе 13.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы*. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).
_______________
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

ISO 1513:1992 Paints and varnishes - Examination and preparation of samples for testing (Лаки и краски. Проверка и приготовление образцов для испытания)

ISO 3170:2004 Petroleum liquids - Manual sampling (Нефтепродукты жидкие. Ручной отбор проб)

ISO 3171:1988 Petroleum liquids - Automatic pipeline sampling (Нефтепродукты жидкие. Автоматический отбор проб из трубопровода)

ISO 15528:2000 Paints, varnishes and raw materials for paints and varnishes - Sampling (Лаки, краски и сырье для лаков и красок. Отбор проб)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 температура вспышки (flash point): Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.

4 Сущность метода

В испытательный тигель аппарата Пенски-Мартенса помещают испытуемый образец и нагревают таким образом, чтобы при непрерывном перемешивании происходило постоянное повышение температуры. Источник зажигания опускают через равномерные интервалы времени через отверстие в крышке тигля, одновременно с этим перемешивание прекращают. Самую низкую температуру, при которой источник зажигания вызывает возгорание паров испытуемого образца нефтепродукта, а пламя распространяется по поверхности жидкости, регистрируют как температуру вспышки при фактическом барометрическом давлении. Эту температуру с помощью уравнения приводят к стандартному атмосферному давлению.

5 Реактивы и материалы

5.1 Растворитель для удаления остатков образца из тигля и с крышки.

Примечание - Выбор растворителя зависит от растворимости остатка предварительно испытанного нефтепродукта. Для удаления маслянистых остатков можно использовать низкокипящие ароматические растворители (не содержащие бензол); для смолообразных остатков эффективными могут быть смеси растворителей, например толуол-ацетон-метанол.

5.2 Жидкости для проверки - см. приложение А.

6 Аппаратура

6.1 Аппарат Пенски-Мартенса для определения температуры вспышки в закрытом тигле (приложение В).

Если для испытания применяют автоматическое оборудование, следует убедиться, что полученные результаты находятся в пределах прецизионности настоящего метода и размеры испытательного тигля и крышки соответствуют техническим требованиям, приведенным в приложении В. Кроме того, следует убедиться, что выполнены все инструкции изготовителя по регулировке и эксплуатации при применении автоматического испытательного оборудования.

Примечание - В некоторых случаях при использовании электрического источника зажигания результаты могут отличаться от полученных при использовании запальника в качестве источника зажигания. Кроме того, применение электрических источников зажигания может привести к нестабильным результатам.


В спорных случаях арбитражным является ручное определение температуры вспышки с применением пламенного запала в качестве источника зажигания.

6.2 Термометры для низких, средних и высоких диапазонов температур, характеристики которых приведены в приложении С. Перед началом измерений выбирают термометр в соответствии с предполагаемой температурой вспышки.

Примечание - Можно использовать другие устройства для измерения температуры при условии, что они соответствуют требованиям точности и дают такие же показания, что и термометры, приведенные в приложении С.

6.3 Барометры с погрешностью до 0,1 кПа. Не следует применять барометры, предварительно откорректированные на давление над уровнем моря, которые используют на метеорологических станциях и в аэропортах.

6.4 Нагревательная баня или термостат, обеспечивающий поддержание температуры при нагревании образца с точностью ±5 °С. Термостат должен быть оснащен системой вентиляции и сконструирован таким образом, чтобы не вызывать воспламенение огнеопасных паров, которые могут образовываться при нагревании образца.

Рекомендуется конструкция термостата во взрывобезопасном исполнении.

7 Подготовка аппарата

7.1 Установка аппарата

Аппарат для определения температуры вспышки (6.1) устанавливают на ровной, устойчивой поверхности в помещении без сквозняка.

Примечание 1 - Если сквозняка невозможно избежать, аппарат защищают экраном со всех сторон.

Примечание 2 - Если испытуемые образцы выделяют ядовитые пары, испытательный аппарат должен быть установлен в вытяжном шкафу с регулируемым потоком отходящего воздуха. Поток отходящего воздуха регулируют таким образом, чтобы пары отводились, не создавая вихревых потоков воздуха над тиглем.

7.2 Очистка испытательного тигля

Испытательный тигель и крышку, включая комплектующие, моют соответствующим растворителем (5.1) для удаления любых следов смолы или остаточных продуктов, оставшихся от предыдущего испытания. Затем тигель сушат потоком чистого воздуха для полного удаления используемого растворителя.

7.3 Сборка испытательного аппарата

Тигель, крышку и другие детали проверяют на наличие повреждений или отложений. Аппарат собирают в соответствии с приложением В.

7.4 Проверка испытательного аппарата

7.4.1 Правильность работы испытательного аппарата проверяют не реже одного раза в год испытанием сертифицированного стандартного материала (CRM) по методу А. Полученный результат должен быть равен или отличаться от значения CRM не более чем , где - воспроизводимость метода (таблица 3).

Рекомендуется проводить более частые проверки, используя вторичные рабочие стандарты (SWS) (5.2).

В приложении А приведена рекомендуемая процедура для проверки испытательного аппарата с использованием CRM и SWS, а также приготовление SWS.

7.4.2 Значения, полученные во время проверки, не могут быть использованы ни для определения отклонения (смещения), ни для любой корректировки температур вспышки, впоследствии определяемых с использованием испытательного аппарата.

8 Отбор проб

8.1 Если не установлено иное, отбор проб проводят по ISO 15528, ISO 3170, ISO 3171 или эквивалентным национальным стандартам.

8.2 Пробу помещают в герметичные контейнеры, подходящие для отбираемого материала. Для обеспечения безопасности следует убедиться, что контейнер для пробы заполнен только на 85%-95% вместимости.

8.3 Пробы хранят в условиях, при которых потери от испарения и повышение давления минимальны. Следует избегать хранения проб при температуре выше 30 °С.

9 Подготовка образцов

9.1 Нефтепродукты

9.1.1 Отбор проб для испытания

Отбор проб для испытания проводят при температуре не менее чем на 28 °С ниже ожидаемой температуры вспышки. Если до испытания образец должен находиться на хранении, следует убедиться, что контейнер заполнен более чем на 50% его вместимости (примечание к 10.1).

9.1.2 Пробы, содержащие нерастворенную воду

Если проба содержит нерастворенную воду, перед перемешиванием ее следует отделить от воды.

Присутствие воды может влиять на результаты определения температуры вспышки. Для некоторых жидких топлив и смазочных масел пробу не всегда можно отделить от свободной воды. В таких случаях вода должна быть физически отделена от пробы нефтепродукта или, если это невозможно, испытание пробы проводят по стандарту .

9.1.3 Пробы жидкие при температуре окружающей среды

Перед отбором пробы для испытания образец перемешивают вручную осторожным встряхиванием, следя за тем, чтобы минимизировать потери низкокипящих компонентов, а далее действуют в соответствии с разделом 10.

9.1.4 Пробы полутвердые или твердые при температуре окружающей среды

Контейнер с пробой нагревают в нагревательной бане или термостате (6.4) в течение 30 мин при температуре (30±5) °С или при более высокой температуре, не превышающей ожидаемую температуру вспышки на 28 °С. Если проба не становится полностью жидкой через 30 мин, то ее предварительное нагревание продолжают по мере необходимости дополнительными периодами по 30 мин. Следует избегать перегрева пробы, что может привести к потере низкокипящих компонентов. Далее после осторожного перемешивания поступают в соответствии с разделом 10.

9.2 Краски и лаки

Подготовку проб проводят по ISO 1513.

10 Проведение испытания

10.1 Общие положения

Примечание - Результаты определения температуры вспышки могут быть искажены, если контейнер заполнен пробой менее чем на 50% его вместимости.


Следует быть внимательным при испытании образцов мазута, содержащих значительное количество воды, так как нагревание таких образцов может вызвать их вспенивание и выброс из испытательного тигля.

10.2 Метод А

10.2.1 По барометру (6.3) записывают давление окружающей среды около аппарата во время испытания.

Примечание - Нет необходимости корректировать давление окружающей среды на 0 °С, хотя некоторые барометры выполняют эту корректировку автоматически.

10.2.2 Испытательный тигель заполняют образцом (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и запирающий механизм зафиксирован, затем помещают термометр (6.2). Зажигают запальное пламя и регулируют, чтобы его диаметр был в пределах от 3 до 4 мм, или включают альтернативный источник запального пламени. Зажигают нагревательное пламя (нагревательную горелку) или включают электрический нагреватель и нагревают с такой скоростью, чтобы температура испытуемого образца, фиксируемая термометром, повышалась на 5 °С - 6 °С в минуту; эту скорость нагревания поддерживают в течение всего испытания.

Перемешивают испытуемый образец сверху вниз со скоростью от 90 до 120 об/мин.

10.2.3 Если ожидаемая температура вспышки испытуемого образца не выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемой пробы на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 1 °С. Перемешивание прерывают и проводят зажигание, запуская механизм, расположенный на крышке, который управляет заслонкой и запальным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.4 Если ожидаемая температура вспышки выше 110 °С, первое испытание пламенем проводят при достижении температуры испытуемого образца на (23±5) °С ниже ожидаемой температуры вспышки и далее с интервалами 2 °С. Перемешивание прерывают и проводят зажигание, запуская расположенный на крышке механизм, который управляет заслонкой и зажигательным устройством таким образом, что пламя опускается в паровое пространство тигля в течение 0,5 с, остается в нижнем положении 1 с и быстро возвращается в верхнее положение.

10.2.5 Если температура вспышки испытуемого продукта неизвестна, то проводят предварительное испытание при подходящей исходной температуре. Первое поджигание проводят при температуре на 5 °С выше исходной температуры, затем действуют в соответствии с процедурой, приведенной в 10.2.3 или 10.2.4.

10.2.6 В качестве наблюдаемой температуры вспышки записывают температуру испытуемого образца по показанию термометра в то время, когда пламя запального устройства вызывает четко выраженную вспышку внутри испытательного тигля.

Температуру вспышки не следует путать с голубоватым ореолом, который иногда окружает источник зажигания перед тем, как он вызывает вспышку.

10.2.7 Если температура, при которой наблюдается вспышка, отличается менее чем на 18 °С и более чем на 28 °С от температуры, при которой было проведено первое применение источника зажигания, результат считают недействительным. В этом случае испытание повторяют с другой порцией образца, а температуру, при которой зажигательное устройство вводят впервые, подбирают таким образом, чтобы был получен достоверный результат, следовательно, температура вспышки должна быть на18 °С - 28 °С выше температуры, при которой проводилось первое испытание пламенем.

10.3 Метод В

10.3.1 Записывают давление окружающей среды по барометру (6.3) вблизи аппарата во время испытания (см. примечание к 10.2.1).

10.3.2 Помещают испытуемый образец в испытательный тигель (7.3) до метки. Тигель закрывают крышкой и помещают в нагревательную камеру. Убеждаются, что он расположен нормально и зафиксирован, и затем вставляют термометр (6.2). Зажигают пламя и устанавливают диаметр запального пламени в пределах от 3 до 4 мм либо включают альтернативный источник зажигания. Затем осуществляют нагревание, поджигая нагревательное пламя или включая электрический нагреватель, чтобы температура испытуемого образца, фиксируемая термометром, поднималась со скоростью от 1 °С до 1,5 °С в минуту; эту скорость нагревания сохраняют во время всего испытания. Испытуемый образец перемешивают сверху вниз со скоростью (250±10) об./мин.

10.3.3 Выполняют испытание согласно 10.2.3-10.2.7, за исключением требований по скорости нагревания и скорости перемешивания, приведенных в 10.3.2.

11 Вычисления

11.1 Пересчет показаний барометрического давления

Если барометрическое давление измерено в единицах, отличных от килопаскалей, то его пересчитывают по одному из следующих выражений:

значение в гектопаскалях0,1 = значение в килопаскалях;

значение в миллибарах0,1 = значение в килопаскалях;

значение в миллиметрах ртутного столба1,333 = значение в килопаскалях.

11.2 Пересчет наблюдаемой температуры вспышки на стандартное атмосферное давление

Температуру вспышки , с поправкой на стандартное атмосферное давление 101,3 кПа, рассчитывают по формуле

где - температура вспышки при барометрическом давлении окружающей среды, °С;

- барометрическое давление окружающей среды, кПа.

Примечание - Эта формула действительна только для барометрического давления в диапазоне от 98,0 до 104,7 кПа.

12 Обработка результатов

Записывают температуру вспышки с поправкой на стандартное атмосферное давление, округляя до 0,5 °С.

13 Прецизионность

13.1 Общие положения

Прецизионность, определенная статистической оценкой результатов межлабораторных испытаний по стандарту , приведена в 13.2 и 13.3.

13.2 Повторяемость (сходимость)

Расхождение между двумя результатами испытаний, полученными одним оператором на одной и той же аппаратуре при постоянных условиях на идентичном испытуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать значения, приведенные в таблицах 1 и 2, только в одном случае из двадцати.

Таблица 1 - Повторяемость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

Краски и лаки

От 40 до 250 включ.



Таблица 2 - Повторяемость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Повторяемость

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию пленки на поверхности; жидкости с суспендированными твердыми материалами; высоковязкие продукты

Данные, полученные для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Данные по прецизионности были определены Комитетом ASTM D-1.

13.3 Воспроизводимость

Расхождение между двумя независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях, на идентичном испытуемом материале при нормальном и правильном выполнении метода испытаний в течение длительного времени, может превышать значения, приведенные в таблицах 3 и 4, только в одном случае из двадцати.

Таблица 3 - Воспроизводимость для метода А

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Краски и лаки

Дистилляты и свежие смазочные масла

От 40 до 250

Среднеарифметическое значение сравниваемых результатов испытания.


Таблица 4 - Воспроизводимость для метода В

В градусах Цельсия

Материал (нефтепродукт)

Диапазон температуры вспышки

Воспроизводимость

Остаточные топлива и разжиженные битумы

От 40 до 110

Отработанные смазочные масла

От 170 до 210

Жидкости, склонные к образованию поверхностной пленки; жидкости с суспендированными твердыми веществами; высоковязкие продукты

Данные получены для одного образца дизельного моторного топлива, испытанного в 20 лабораториях.

Прецизионность установлена Комитетом ASTM D-1.

14 Протокол испытаний

Протокол испытаний должен содержать:

а) обозначение настоящего стандарта и примененную процедуру;

b) тип и полную идентификацию испытуемого образца;

c) температуру предварительного подогрева и время подогрева, если он применялся (9.1.4);

d) барометрическое давление вблизи испытательного аппарата (10.2.1 и 10.3.1);

e) результат испытания (раздел 12);

f) любое отклонение от установленной процедуры испытания;

g) дату проведения испытания.

Приложение А (справочное). Проверка аппарата

Приложение А
(справочное)

А.1 Общие положения

В настоящем приложении изложены процедура приготовления вторичных рабочих стандартов (SWS) и метод для контрольной проверки с использованием SWS и сертифицированного стандартного материала (CRM).

Функционирование аппарата (ручного или автоматического) следует регулярно проверять с использованием CRM, приготовленного по стандартам и , или SWS, приготовленных в соответствии с одной из процедур, приведенных в А.2.2. Функционирование аппарата должно быть оценено по стандартам и .

Оценка результата испытания проводится с 95%-ной доверительной вероятностью.

А.2 Стандарты для контрольной проверки

А.2.1 CRM - стабильный индивидуальный углеводород или другое стабильное вещество, температура вспышки которого определена по стандартам и в ходе специальных межлабораторных испытаний по определению сертифицированного значения, характерного для настоящего метода.

А.2.2 SWS - стабильный нефтепродукт или индивидуальный углеводород, или другое стабильное вещество, температура вспышки которого была определена:

а) испытанием представительных образцов не менее трех раз, с использованием аппаратуры, которая предварительно была проверена с использованием CRM, с последующим статистическим анализом полученных результатов, исключая любые выпадающие из них результаты и вычисляя среднеарифметическое значение полученных результатов;

b) проведением межлабораторной программы испытаний по настоящему методу, в которой принимают участие не менее трех лабораторий, выполняющих параллельные испытания представительных образцов. Окончательное значение температуры вспышки должно быть вычислено после проведения статистического анализа результатов, полученных при межлабораторных испытаниях.

SWS хранят в контейнерах, позволяющих сохранить их чистоту, защищенных от прямых солнечных лучей, при температуре не выше 10 °С.

А.3 Проведение испытаний

А.3.1 Выбирают CRM или SWS, температура вспышки которых попадает в диапазон температур, определенный с использованием рассматриваемого аппарата.

CRM и SWS выбирают таким образом, чтобы их температура вспышки находилась в пределах интервала, измеренного с помощью прибора. Приблизительные значения температуры вспышки приведены в таблице А.1.


Таблица А.1 - Приблизительные значения температуры вспышки углеводородов в закрытом тигле

Углеводород

Номинальная температура вспышки, °С

Ундекан

Додекан

Тетрадекан

Гексадекан


Для того чтобы охватить по возможности большую часть используемого диапазона температур, рекомендуется применять два CRM или SWS. Кроме того, рекомендуется провести повторные испытания с применением аликвот CRM или SWS.

А.3.2 Для новой аппаратуры и не менее одного раза в год для работающей аппаратуры выполняют контрольные проверки по 10.2 с использованием CRM (А.2.1).

А.3.3 При промежуточной проверке по 10.2 для контроля используют SWS (А.2.2).

А.3.4 Полученные результаты корректируют на барометрическое давление в соответствии с 11.2. В окончательный отчет записывают откорректированный результат с точностью до 0,1 °С.

А.4 Обработка результатов испытаний

А.4.1 Общая информация

Сравнивают откорректированный результат с сертифицированным значением температуры вспышки CRM или известной температурой вспышки SWS.

В формулах, приведенных в А.4.1.1 и А.4.1.2, предусмотрено, что воспроизводимость была оценена по стандарту , а сертифицированное значение температуры вспышки CRM или заданное значение температуры вспышки SWS было определено с использованием процедур по руководству , и его неопределенность мала по сравнению со стандартным отклонением настоящего метода испытания и, следовательно, мала по сравнению со значением воспроизводимости настоящего метода испытания.

А.4.1.1 Единичное испытание

Для единичного испытания, проведенного с использованием CRM или SWS, разность между единичным результатом и сертифицированным значением температуры вспышки CRM или обозначенным значением температуры вспышки SWS должна находиться в пределах следующего допуска

где - результат испытания;



- воспроизводимость настоящего метода испытания.

А.4.1.2 Многократные испытания

Если ряд повторных испытаний проведен с использованием CRM или SWS, разность между средним значением результатов и сертифицированным значением CRM или обозначенным значением SWS должна находиться в пределах следующего допуска

где - среднеарифметическое значение результатов испытания;

Сертифицированное значение температуры вспышки CRM или обозначенное значение температуры вспышки SWS;

- рассчитывают по формуле

где - повторяемость настоящего метода испытания;

Количество повторных испытаний, выполненных с использованием CRM или SWS.

А.4.2 Если результат испытания находится в пределах установленного допуска, это должно быть записано.

А.4.3 Если результат испытания находится вне пределов требуемого допуска, а для контрольной проверки аппаратуры был использован SWS, это записывают и повторяют испытание с использованием CRM. Если в этом случае результат испытания находится в пределах установленного допуска, это также записывают.

А.4.4 Если результат испытания все еще находится вне пределов требуемого допуска, проверяют испытательную аппаратуру и убеждаются в том, что она соответствует требованиям спецификации. Если не установлены очевидные несоответствия, выполняют еще одну контрольную проверку с использованием CRM. Если результат испытания находится в пределах установленного допуска, это записывают. Если результат испытания все еще находится вне пределов требуемого допуска, то аппаратуру отправляют изготовителю для тщательной проверки.

Приложение В (обязательное). Аппарат Пенски-Мартенса с закрытым тиглем

Приложение В
(обязательное)

В.1 Общая информация

В настоящем приложении приведено описание аппарата, работающего в ручном режиме, нагреваемого газом или электронагревателем и оснащенного источником зажигания с применением пламени. Аппарат состоит из испытательного тигля, крышки со вспомогательным приспособлением и нагревательной камеры, представленных в разделах В.2-В.4. На рисунке В.1 приведен типичный аппарат c газовым нагревателем.

1 - ручка (не обязательна); 2 - передняя часть; 3 - запальник; 4 - обогреватель: газовая горелка или электроэлемент (на рисунке приведена горелка); 5 - металлическая стенка воздушной бани, окружающей тигель, толщиной не менее 6,5 мм; 6 - нагревательная камера; 7 - воздушная баня; 8 - колпак; 9 - крышка; 10 - зажигательное устройство; 11 - гибкий вал; 12 - рукоятка, приводящая в движение заслонку; 13 - термометр; 14 - втулка диаметром не более 9,5 мм; 15 - тигель; 16 - заслонка; 17 - воздушный зазор

Примечание - Крышка устанавливается поворотом влево или вправо.

Рисунок В.1 - Аппарат Пенски-Мартенса с закрытым тиглем с газовым нагревателем

В.2 Испытательный тигель

Испытательный тигель из латуни или другого нержавеющего металла с аналогичной теплопроводностью, форма и размеры которого должны соответствовать приведенным на рисунке В.2. Фланец должен быть оснащен приспособлениями для фиксации положения тигля в нагревательной камере. Ручка, прикрепленная к фланцу тигля, является желательным приспособлением. Она не должна быть настолько тяжелой, чтобы опрокидывать тигель.

1 - метка наполнения

Рисунок В.2 - Испытательный тигель

В.3 Крышка с комплектующими

В.3.1 Крышка должна включать нижеперечисленные элементы.

В.3.2 Крышка из латуни или другого нержавеющего металла аналогичной проводимости, имеющая бортик, выступающий вниз почти до фланца тигля, как показано на рисунке В.3. Зазор между бортиком и наружной поверхностью тигля не должен превышать 0,36 мм в диаметре. Необходимо предусмотреть установочное или запорное устройство или и то, и другое, соединяющееся с соответствующим приспособлением на тигле. В крышке имеются три отверстия А, В и С, показанные на рисунке В.3. Верхний край тигля должен плотно соприкасаться с внутренней поверхностью крышки по всей ее окружности.

Рисунок В.3 - Крышка

Рисунок В.3 - Крышка

В.3.3 Заслонка из латуни толщиной приблизительно 2,4 мм, перемещающаяся в плоскости верхней поверхности крышки, как показано на рисунке В.4. Заслонка должна иметь такую форму и быть установлена таким образом, чтобы она поворачивалась в горизонтальной плоскости на оси в центре крышки между двумя упорами, при этом, когда она находится в одном крайнем положении, отверстия в крышке А, В и С должны быть полностью закрыты, а когда она находится в другом крайнем положении, эти отверстия должны быть полностью открыты. Заслонка приводится в действие пружинным механизмом, сконструированным таким образом, что в неработающем состоянии заслонка точно закрывает все три отверстия. Если заслонка переводится в другое крайнее положение, три отверстия в крышке должны быть полностью открыты, а наконечник устройства для зажигания (В.3.4) должен быть полностью опущен.

а - край тигля должен соприкасаться с поверхностью крышки по всей окружности, b - зазор, равный не более 0,36 мм

1 - мешалка; 2 - испытательный тигель; 3 - заслонка; 4 - устройство для поджигания испытуемого образца; 5 - термометр; 6 - адаптер (переходная муфта); 7 - крышка

Рисунок В.4 - Тигель с крышкой

В.3.4 Устройство для зажигания, которое должно иметь наконечник с отверстием диаметром от 0,7 до 0,8 мм (см. рисунок В.4). Наконечник должен быть изготовлен из нержавеющей стали или другого подходящего материала. Устройство для зажигания должно быть оснащено перемещающим механизмом, который при "открытом" положении заслонки опускает наконечник таким образом, что центр его отверстия располагается между плоскостями верхней и нижней поверхностей крышки, в точке на радиусе, проходящем через центр самого большого отверстия А (рисунок В.3).

Примечание - В хорошо просматриваемом месте крышки может быть закреплен изготовленный из подходящего материала шарик-шаблон, размеры которого соответствуют размерам испытательного пламени (от 3 до 4 мм).

В.3.5 Запальник для автоматического зажигания испытательного пламени. Наконечник запальника должен иметь отверстие диаметром от 0,7 до 0,8 мм.

В.3.6 Перемешивающее устройство, смонтированное в центре крышки (рисунок В.4), имеющее две двухлопастные металлические крыльчатки. Нижняя крыльчатка должна иметь приблизительно 38 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Верхняя крыльчатка должна иметь приблизительно 19 мм между кончиками лопастей, каждая из двух ее лопастей должна иметь ширину 8 мм и быть установлена под углом 45°. Обе крыльчатки располагаются на валу мешалки таким образом, что если смотреть снизу, то лопасти одной крыльчатки располагаются на направлениях 0° и 180°, а лопасти другой - на направлениях 90° и 270°.

Примечание - Вал мешалки соединяют с двигателем с использованием гибкого вала или соответствующего комплекта шкивов, при этом перемешивание должно осуществляться сверху вниз.

В.4 Нагревательная камера и колпак

Тепло подводят к испытательному тиглю с помощью специальной нагревательной камеры, которая эквивалентна воздушной бане. Нагревательная камера должна состоять из воздушной бани и колпака, на который опирается фланец испытательного тигля.

Внутреннее пространство воздушной бани должно иметь цилиндрическую форму и соответствовать размерам, приведенным на рисунке В.1. Металлический корпус воздушной бани должен нагреваться газовым пламенем или наружным электронагревателем, или элементом электросопротивления. В любом случае наружная поверхность корпуса воздушной бани не должна деформироваться при температурах, которым она будет подвергаться во время испытаний.

Если воздушная баня нагревается газовым пламенем или металлическим электрообогревателем, то она должна быть сконструирована таким образом, чтобы температура дна и стенок нагреваемой конструкции была приблизительно одинаковой. Для этого толщина дна и стенок должна быть не менее 6 мм. Если воздушная баня нагревается газовым пламенем, то конструкция корпуса должна быть такой, чтобы продукты сгорания не могли подниматься вверх и контактировать с испытательным тиглем.

Если воздушная баня оснащена элементом электросопротивления, то он должен быть сконструирован таким образом, чтобы все части внутренней поверхности воздушной бани нагревались равномерно. Стенки и дно воздушной бани должны иметь толщину не менее 6 мм.

Верхний металлический колпак должен быть установлен так, чтобы между ним и воздушной баней был воздушный зазор. Колпак должен быть прикреплен к воздушной бане тремя болтами с использованием распорных втулок. Втулки должны быть выполнены так, чтобы обеспечить воздушный зазор (4,8±0,2) мм, а их диаметр не должен быть более 9,5 мм.

Приложение С (обязательное). Требования к термометрам

Приложение С
(обязательное)

Таблица С.1 - Требования к термометрам

Параметр

Низкое значение температуры

Среднее значение температуры

Высокое значение температуры

Диапазон, °С

От -5 до +100

От 20 до 150

От 90 до 370

Глубина погружения, мм

Градуировки:

цена деления, °С

длинная линия у каждого деления, °С

Оцифровка у каждого деления, °С

Погрешность шкалы, °С, не более

1 - до 260 °С

2 - св. 260 °С

Расширительный резервуар допускает нагревание до, °С

Общая длина, мм

От 282 до 295

От 282 до 295

От 282 до 295

Внешний диаметр капилляра, мм

Длина резервуара, мм

Диаметр резервуара, мм

Не менее 5,5 и не более наружного диаметра капилляра

Не менее 5,5 и не более наружного диаметра капилляра

Расстояние от основания резервуара до начала шкалы, мм, при

0 °С: от 85 до 95

20 °С: от 85 до 95

90 °С: от 80 до 90

Длина градуировки, мм

От 140 до 175

От 140 до 180

От 145 до 180

Расширение внешнего диаметра капилляра:

диаметр, мм

От 7,5 до 8,5

От 7,5 до 8,5

От 7,5 до 8,5

длина, мм

От 2,5 до 5,0

От 2,5 до 5,0

От 2,5 до 5,0

расстояние от основания расширения до основания резервуара, мм

Примечания

1 Указанным выше требованиям соответствуют термометры типа IP 15C/ASTM 9С, IP 16C/ASTM 10С, IP 101 С и ASTM 88C.

2 Приложение D содержит описание адаптера для низкотемпературных термометров.

Приложение D (справочное). Адаптеры для низкотемпературных термометров

Приложение D
(справочное)

D.1 Общие положения

Низкотемпературные термометры иногда оснащены металлической манжетой с установочным кольцом для испытательного тигля Тага (стандарт ). Для применения в установочном кольце большего диаметра аппарата Пенски-Мартенса можно использовать адаптер (переходную муфту) (рисунок D.1).

___________________

Или эквивалентный.

В соответствии с диаметром расширения внешнего диаметра капилляра.

Прорезь.

1 - зажимная гайка; 2, 4 - уплотнительные кольца (мягкий алюминий); 3 - манжета; 5 - адаптер (переходная муфта)

Рисунок D.1 - Размеры адаптера (переходной муфты) для термометра, уплотнительных колец и манжеты

D.2 Контрольный шаблон

Длину расширения внешнего диаметра капилляра и расстояние от основания расширения до основания шарика термометра можно измерить контрольным шаблоном, приведенным на рисунке D.2.

Рисунок D.2 - Контрольный шаблон для проверки расширения внешнего диаметра капилляра термометра

Библиография

ISO Guide 33:1989

Uses if certified reference materials
(Руководство по использованию стандартных образцов)

ISO Guide 34:2000

General requirements for the competence of reference material producers
(Общие требования к компетенции изготовителей стандартных образцов)

ISO Guide 35:1989

Certification of reference materials - General and statistical principles
(Руководство сертификации стандартных образцов. Общие и статистические принципы)

Determination of flash point - Closed cup equilibrium method
(Определение температуры вспышки. Метод в закрытом тигле в равновесных условиях)

ISO 2592:2000

Determination of flash and fire points - Cleveland open cup method
(Определение температуры вспышки и воспламенения. Метод Кливленда в закрытом тигле)

Determination of flash point- Rapid equilibrium closed cup method
(Определение температуры вспышки. Экспресс-метод в закрытом тигле)

ISO 4259:1992

Petroleum products - Determination and application of precision data in relation to methods of test
(Нефтепродукты. Определение и применение прецизионности методов испытания)

ISO 13736:1997

Petroleum products and other liquids - Determination of flash point - Abel closed cup method
(Нефтепродукты и другие жидкости. Определение температуры вспышки. Метод Абеля в закрытом тигле)

ASTM D 56-10

Standard test method for flash point by Tag closed tester
(Стандартный метод определения температуры вспышки в закрытом тигле Тага)

Приложение ДА (справочное). Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Приложение ДА
(справочное)

Таблица ДА.1

Обозначение и наименование международного стандарта

Степень соответствия

Обозначение и наименование межгосударственного стандарта

ISO 1513:1992 Лаки и краски. Проверка и приготовление образцов для испытания
ISO 3171:1988 Нефтепродукты жидкие. Автоматический отбор проб из трубопровода* Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

УДК 665.71:006.354 МКС 75.080 IDT

Ключевые слова: нефтепродукты, методы определения, температура вспышки, закрытый тигель Пенски-Мартенса

____________________________________________________________________



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2014

Определение температуры вспышки в открытом тигле.

Температуру вспышки в открытом тигле определяют в приборе Бренкена (рис. 36).

Рис. 36 – Прибор для определения

температуры вспышки в открытом тигле

Нагрев нефтепродукта осуществляют в железном тигле диаметром 63-65, высотой 46-48 и толщиной стенок 1 мм. Тигель помещают в металлическую песчаную баню высотой 45-55 и диаметром 95-105 мм, установленную на штативе. Термометр на 360°С прикрепляется к штативу. Нагрев бани осуществляется газовой горелкой, а испытание на вспышку – зажигательным устройством. Последняя представляет собой оттянутую стеклянную или металлическую трубку диаметром 1 мм, соединенную резиновой трубкой с источником газа.

В тигель прибора Бренкена, предварительно промытый и осушенный, наливают испытуемое масло до уровня на 12 мм ниже края тигля, если продукт имеет температуру вспышки до 210 0 С, и на 18 мм для продукта с более высокой температурой вспышки. Уровень налива нефтепродукта в тигле устанавливается по металлическому шаблону, входящему в комплект прибора Бренкена. Тигель помещают в песчаную баню, содержащую на дне слой прокаленного песка толщиной 5-8 мм. Под песчаную баню устанавливают горелку и регулируют ее пламя так, чтобы продукт нагревался на 10°С в мин и за 40°С до ожидаемой температуры вспышки нагревание уменьшают до 4°С в минуту.

Определение температуры вспышки начинается за 10°С до ожидаемой температуры вспышки, проводя на расстоянии 10-14 мм от поверхности масла через каждые 2 градуса пламя зажигательного устройства. Длина пламени должна быть 3-4 мм, а длительность каждого испытания – 2-3 с.

За температуру вспышки принимают ту температуру, при которой отмечается появление перебегающего и быстро исчезающего синего пламени.

Достаточно похоже, но с большей долей автоматизации различных этапов работы, температура вспышки в открытом тигле определяется в приборе ТВО-ЛАБ-01 (рис. 37).


Рис.37 - Лабораторный ТБО-ЛАБ-01

для определения температуры вспышки в открытом тигле.

Цвет масел

Интенсивность окраски масел зависит от присутствия в нем темных смолистых веществ. Эти вещества окрашивают большинство масел в цвета от бледно-желтого до желто-бурого. Между интенсивностью окраски и количеством смолистых веществ не существует прямой зависимости. Лишь приблизительно по цвету масла можно судить о степени его очистки. Более точное заключение о цвете масла делают путем сравнения испытуемого масла с эталонным стеклом или стандартным раствором. Цвет масла нормируется в миллиметрах (ГОСТ 2667-80). Сущность определения цвета масла состоит в том, что подбирают такую толщину слоя испытуемого масла, при которой интенсивность его окраски совпадает с окраской эталонного стекла или раствора определенной высоты столба. Естественно, что чем светлее масло, тем толще слой. Поэтому в ГОСТе этот показатель нормируется не менее той или иной толщины слоя (в миллиметрах). Цвет масла можно определять в колориметре ЦНТ согласно ГОСТ 20284-74 «Нефтепродукты. Метод определения цвета на колориметре ЦНТ».

ГОСТ 4333-87

Группа Б09

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Методы определения температур вспышки и воспламенения в открытом тигле

Petroleum products. Methods for determination of flash and ignition points in open crucible

МКС 75.080
ОКСТУ 0209

Дата введения 1988-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством нефтеперерабатывающей и нефтехимической промышленности СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.06.87 N 2911

3. Стандарт соответствует требованиям СТ СЭВ 5469-86 в части метода А

В стандарт введен международный стандарт ИСО 2592-73

4. ВЗАМЕН ГОСТ 4333-48

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер раздела

6. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

7. ИЗДАНИЕ (апрель 2005 г.) с Изменением N 1, утвержденным в декабре 1989 г. (ИУС 3-90)

Переиздание (по состоянию на апрель 2008 г.)


Настоящий стандарт устанавливает методы определения температур вспышки и воспламенения в открытом тигле по методам Кливленда (метод А) и Бренкена (метод Б).

При возникновении разногласий в оценке качества нефтепродукта определение проводят по методу Кливленда.

Сущность методов заключается в нагревании пробы нефтепродукта в открытом тигле с установленной скоростью до тех пор, пока не произойдет вспышка паров (температура вспышки) нефтепродукта над его поверхностью от зажигательного устройства и пока при дальнейшем нагревании не произойдет загорание продукта (температура воспламенения) с продолжительностью горения не менее 5 с.

Термины, применяемые в стандарте, и пояснения к ним приведены в приложении.

1. АППАРАТУРА, РЕАКТИВЫ И МАТЕРИАЛЫ

Аппараты для определения температур вспышки и воспламенения в открытом тигле типов ТВО (ТВ-2) или полуавтоматические и автоматические типа АТВО (АТВ-2), дающие результаты в пределах допускаемых расхождений по методу Кливленда.

При возникновении разногласий в оценке качества нефтепродукта определение проводят вручную.

Экран трехстворчатый, окрашенный с внутренней стороны черной краской, с секциями шириной (46±1) см и высотой (60±5) см или щит высотой 55-65 см из листовой кровельной стали, окрашенный с внутренней стороны черной краской.

Термометр типа ТН-2 по ГОСТ 400 .

Секундомер любого типа.

Барометр ртутный или барометр-анероид с погрешностью измерения не более 0,1 кПа.

Бумага фильтровальная лабораторная по ГОСТ 12026 .

Пипетка.

Щетка металлическая.

Бензин-растворитель с пределами выкипания от 50 до 170 °С или нефрас С50/170 по ГОСТ 8505 .

Осушающие реагенты (обезвоженные): натрий сернокислый безводный по ГОСТ 4166 или натрий сернокислый технический по ГОСТ 6318 , или кальций хлористый технический по ГОСТ 450 , или натрий хлористый по ГОСТ 4233 .

Вода дистиллированная.

Дополнительно для метода Б:

аппарат для определения температур вспышки и воспламенения в открытом тигле по методу Бренкена (типа ЛТВО).

Допускается применять импортную посуду, аппаратуру и реактивы по классу точности и квалификации не ниже предусмотренных стандартом.

(Измененная редакция, Изм. N 1).

2. МЕТОД А

2.1. Подготовка к испытанию

2.1.1. Подготовка пробы

2.1.1.1. Пробу тщательно и осторожно перемешивают.

2.1.1.2. Пробы твердых нефтепродуктов предварительно расплавляют.

Температура пробы после нагревания должна быть ниже предполагаемой температуры вспышки не менее чем на 56 °С.

2.1.1.3. Испытуемый нефтепродукт, содержащий воду, сушат встряхиванием с одним из осушающих реагентов при комнатной температуре. Нефтепродукты с температурой вспышки до 100 °С сушат при температуре не выше 20 °С. Вязкие нефтепродукты (вязкость при 100 °С свыше 16,5 мм/с) сушат при температуре не более 80 °С.

Затем пробы фильтруют и декантируют.

2.1.2. Подготовка аппарата

2.1.2.1. Аппарат устанавливают на горизонтальном столе в таком месте, где нет заметного движения воздуха и вспышка хорошо видна. Для защиты от движения воздуха аппарат с трех сторон окружают экраном или щитом. Перед проведением каждого испытания аппарат охлаждают.

2.1.2.2. При работе с токсичными продуктами или продуктами, содержащими ароматические углеводороды (продукты пиролиза), пары которых являются токсичными, аппарат помещают вместе с экраном или со щитом в вытяжной шкаф. При температуре на 56 °С ниже предполагаемой температуры вспышки движение воздуха в вытяжном шкафу следует поддерживать без создания сильных потоков над тиглем, для чего необходимо работать при закрытой верхней заслонке вентиляционного устройства вытяжного шкафа.

2.1.2.3. Перед каждым испытанием тигель промывают растворителем. Углеродистые отложения удаляют металлической щеткой. Затем тигель промывают холодной дистиллированной водой и высушивают на открытом пламени или горячей электроплитке. Тигель охлаждают до температуры не менее чем на 56 °С ниже предполагаемой температуры вспышки и помещают его в аппарат.

2.1.2.4. В тигель помещают термометр в строго вертикальном положении так, чтобы нижний конец термометра находился на расстоянии 6 мм от дна тигля и на равном расстоянии от центра и от стенок тигля.

2.1.2.5. Аппараты и правильность результатов определений рекомендуется проверять по государственным стандартным образцам ГСО ТОТ 4407-88 - ГСО ТОТ 4410-88.

Аппарат пригоден к испытанию нефтепродуктов и выдержаны условия испытания, если разность результатов определения температуры вспышки ГСО и аттестованной характеристикой ГСО не превышает значения абсолютной погрешности для данного аттестованного ГСО.

Порядок применения ГСО изложен в инструкции к свидетельству.

(Введен дополнительно, Изм. N 1).

2.2. Проведение испытания

2.2.1. Тигель заполняют нефтепродуктом так, чтобы верхний мениск точно совпадал с меткой. При наполнении тигля выше метки избыток нефтепродукта удаляют пипеткой или другим соответствующим приспособлением. Удаляют пузырьки воздуха с поверхности пробы. Не допускается смачивание стенок тигля выше уровня жидкости.

При попадании нефтепродукта на внешние стенки тигля тигель освобождают от нефтепродукта и обрабатывают по п.2.1.2.3.

2.2.2. Тигель с пробой нагревают пламенем газовой горелки или при помощи электрообогрева сначала со скоростью 14-17 °С в минуту. Когда температура пробы будет приблизительно на 56 °С ниже предполагаемой температуры вспышки, скорость подогрева регулируют так, чтобы последние 28 °С перед температурой вспышки нефтепродукт нагревался со скоростью 5-6 °С в минуту.

2.2.3. Зажигают пламя зажигательного устройства и регулируют его таким образом, чтобы размер диаметра пламени был примерно 4 мм. Его сравнивают с лекалом (шариком-шаблоном), вмонтированным в аппарат.

2.2.4. Начиная с температуры не менее чем на 28 °С ниже температуры вспышки, каждый раз применяют зажигательное устройство при повышении температуры пробы на 2 °С. Пламя зажигательного устройства перемещают в горизонтальном направлении, не останавливаясь над краем тигля, и проводят им над центром тигля в одном направлении в течение 1 с.

При последующем повышении температуры перемещают пламя зажигания в обратном направлении.

2.2.5. За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта.



Голубой круг (ореол), который иногда образуется вокруг пламени зажигания, во внимание не принимают.

2.2.6. Для определения температуры воспламенения продолжают нагрев пробы со скоростью 5-6 °С в минуту и повторяют испытание пламенем зажигательного приспособления через каждые 2 °С подъема температуры нефтепродукта.

2.2.7. За температуру воспламенения принимают температуру, показываемую термометром в тот момент, в который испытуемый нефтепродукт при поднесении к нему пламени зажигательного приспособления загорается и продолжает гореть не менее 5 с.

2.3. Обработка результатов

2.3.1. Если барометрическое давление во время испытания ниже чем 95,3 кПа (715 мм рт.ст.), то необходимо к полученным значениям температуры вспышки и температуры воспламенения ввести соответствующие поправки по табл.1.

Таблица 1

Барометрическое давление, кПа (мм рт.ст.)

Поправка, °С

От 95,3 до 88,7 (от 715 до 665)

" 88,6 " 81,3 ( " 664 " 610)

" 81,2 " 73,3 ( " 609 " 550)

2.3.2. За результат испытания принимают среднеарифметическое значение результатов двух определений, округленное до целого числа и выраженное в градусах Цельсия.

2.4. Точность метода

2.4.1. Сходимость

Два результата испытаний, полученные одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.2.

Таблица 2

Наименование показателя

Сходимость, °С

Воспроизводимость, °С

Температура вспышки

Температура воспламенения

2.4.2. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.2.

3. МЕТОД Б

3.1. Подготовка к испытанию

Подготовка к испытанию проводится по пп.2.1-2.1.2.3.

3.2. Проведение испытания

3.2.1. Тигель охлаждают до температуры 15-25 °С и ставят в наружный тигель аппарата с прокаленным песком так, чтобы песок был на высоте около 12 мм от края внутреннего тигля, а между дном этого тигля и наружным тиглем был песок, толщина слоя которого 5-8 мм, что проверяется шаблоном.

3.2.2. Во внутренний тигель с нефтепродуктом устанавливают термометр в строго вертикальном положении так, чтобы ртутный шарик находился в центре тигля приблизительно на одинаковом расстоянии от дна тигля и от уровня нефтепродукта, и закрепляют термометр в таком положении в лапке штатива.

3.2.3. Испытуемый нефтепродукт наливают во внутренний тигель так, чтобы уровень жидкости отстоял от края тигля на 12 мм для нефтепродуктов со вспышкой до 210 °С включительно и на 18 мм для нефтепродуктов со вспышкой выше 210 °С.

Правильность налива нефтепродукта проверяют шаблоном, налив нефтепродукта производят до соприкосновения поверхности нефтепродукта с острием указателя высоты уровня жидкости.

При наливе не допускается разбрызгивание нефтепродукта и смачивание стенок внутреннего тигля выше уровня жидкости.

3.2.4. Наружный тигель аппарата нагревают пламенем газовой горелки или лампы Бартеля или электрообогревом так, чтобы испытуемый нефтепродукт нагревался на 10 °С в 1 мин.

За 40 °С до предполагаемой температуры вспышки нагрев ограничивают до 4 °С в 1 мин.

3.2.5. За 10 °С до предполагаемой температуры вспышки проводят медленно по краю тигля на расстоянии 10-14 мм от поверхности испытуемого нефтепродукта и параллельно этой поверхности пламенем зажигательного приспособления. Длина пламени должна быть 3-4 мм. Время продвижения пламени от одной стороны тигля до другой 2-3 с.

Такое испытание повторяют через каждые 2 °С подъема температуры.

3.2.6. За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта.

В случае появления неясной вспышки она должна быть подтверждена последующей вспышкой через 2 °С.

Истинную вспышку не следует смешивать с отблеском от пламени зажигательного приспособления.

3.2.7. Для определения температуры воспламенения продолжают нагревание наружного тигля так, чтобы нефтепродукт нагревался со скоростью 4 °С в 1 мин и повторяют испытание пламенем зажигательного приспособления через каждые 2 °С подъема температуры нефтепродукта.

3.2.8. За температуру воспламенения принимают температуру, показываемую термометром в тот момент, в который испытуемый нефтепродукт при поднесении к нему пламени зажигательного приспособления загорается и продолжает гореть не менее 5 с.

3.3. Обработка результатов

Обработка результатов проводится по пп.2.3.1-2.3.2.

3.4. Точность метода

3.4.1. Сходимость

Два результата определений температуры вспышки, полученные одним исполнителем в одной лаборатории, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает 4 °С.

Расхождение между двумя последовательными определениями температуры воспламенения не должно превышать 6 °С.

3.4.2. Воспроизводимость (для температуры вспышки)

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает 16 °С.

ПРИЛОЖЕНИЕ
Справочное

ПРИЛОЖЕНИЕ (справочное). ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Термин

Пояснение

Температура вспышки нефтепродукта в открытом тигле

Минимальная температура, при которой пары продукта, нагреваемого в условиях, установленных настоящим стандартом, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени

Температура воспламенения нефтепродукта

Минимальная температура, при которой продукт, нагреваемый в условиях, установленных настоящим стандартом, загорается при поднесении к нему пламени и горит не менее 5 с

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:

официальное издание
М.: Стандартинформ, 2008