Информационно развлекательный портал
Поиск по сайту

Нашатырный спирт физические свойства. Применение аммиака в медицине. Современный процесс синтеза

На процесс производства оптимального количества химического вещества, а также достижения максимального его качества влияет ряд факторов. Получение аммиака зависит от показателей давления, температуры, наличия катализатора, используемых веществ и способа извлечения полученного материала. Эти параметры необходимо правильно сбалансировать для достижения наибольшей прибыли от производственного процесса.

Свойства аммиака

При комнатной температуре и нормальной влажности воздуха аммиак находится в газообразном состоянии и имеет очень отталкивающий запах. Он наделен ядовитым и раздражающим слизистые оболочки воздействием на организм. Получение и свойства аммиака зависят от участия в процессе воды, так как это вещество очень растворимо в нормальных характеристиках окружающей среды.

Аммиак является соединением водорода и азота. Его химическая формула - NH 3 .

Это химическое вещество выступает активным восстановителем, в результате горения которого выделяется свободный азот. Аммиак проявляет характеристики оснований и щелочей.

Реакция вещества с водой

При растворении NH 3 в воде получают аммиачную воду. Максимально при обычной температуре можно растворить в 1 объеме водного элемента 700 объемов аммиака. Известно это вещество как нашатырный спирт и широко применяется в отрасли производства удобрений, в технологических установках.

Полученный путем растворения в воде NH 3 по своим качествам частично ионизирован.

Нашатырный спирт используется в одном из методов лабораторного получения этого элемента.

Получение вещества в лаборатории

Первый метод получения аммиака заключается в доведении нашатырного спирта до кипения, после чего полученный пар осушают и собирают требуемое химическое соединение. Получение аммиака в лаборатории возможно также путем нагревания гашеной извести и твердого хлорида аммония.

Реакция получения аммиака имеет такой вид:

2NH 4 Cl + Ca(OH) 2 → CaCl 2 + 2NH 3 + 2H 2 O

В ходе этой реакции выпадает осадок белого цвета. Это соль CaCl 2 , а еще образовывается вода и искомый аммиак. Для проведения осушения требуемого вещества его пропускают по смеси извести в сочетании с натром.

Получение аммиака в лаборатории не обеспечивает самую оптимальную технологию его производства в необходимых количествах. Люди много лет искали способы добычи вещества в промышленных масштабах.

Истоки налаживания технологий производства

На протяжении 1775-1780 годов были осуществлены опыты по связыванию свободных молекул азота из атмосферы. Шведский химик К. Шелле нашел реакцию, которая имела вид

Na 2 CO 3 + 4C + N 2 = 2NaCN + 3CO

На ее основе в 1895 году Н. Каро и А. Франк разработали метод связывания свободных молекул азота:

CaC 2 + N 2 = CaCN 2 + C

Этот вариант требовал больших затрат энергии и был экономически невыгодным, поэтому со временем от него отказались.

Еще одним довольно затратным методом стал открытый английскими химиками Д. Пристли и Г. Кавендишем процесс взаимодействия молекул азота и кислорода:

Рост потребности в аммиаке

В 1870 году это химическое вещество считалось нежелательным продуктом газовой промышленности и было практически бесполезным. Однако спустя 30 лет это оно стало очень востребованным в коксохимической отрасли.

Сначала возросшую потребность в аммиаке восполняли путем его выделения из каменного угля. Но при росте потребления вещества в 10 раз по поиску путей его добычи велась практическая работа. Получение аммиака стали внедрять с применением запасов атмосферного азота.

Потребность в веществах на основе азота наблюдалась практически во всех известных отраслях экономики.

Поиск путей удовлетворения промышленного спроса

Долгий путь прошло человечество к осуществлению уравнения производства вещества:

N 2 + 3H 2 = 2NH 3

Получение аммиака в промышленности впервые удалось реализовать в 1913 году путем каталитического синтеза из водорода и азота. Способ открыт Ф. Габером в 1908 году.

Открытая технология разрешила давнюю проблему многих ученых разных стран. До этого момента не удавалось связать азот в виде NH 3 . Этот химический процесс получил название цианамидной реакции. При повышении температуры извести и углерода получалось вещество CaC 2 (карбид кальция). Путем нагревания азота и добивались получения цианамида кальция CaCN 2 , из которого выделение аммиака проходило путем гидролиза.

Внедрение технологий для получения аммиака

Получение NH 3 в глобальных масштабах промышленного потребления началось с покупки патента технологий Ф. Габера представителем Баденского содового завода А. Митташем. В начале 1911 года синтез аммиака на небольшой установке стал регулярным. К. Бош создал большой контактный аппарат, исходя из разработок Ф. Габера. Это было оригинальное оборудование, обеспечивающее процесс извлечения аммиака путем синтеза в производственном масштабе. К. Бош взял на себя все руководство по данному вопросу.

Экономия энергозатрат предполагала участие в реакциях синтеза определенных катализаторов.

Группа ученых, работающая над поиском подходящих составляющих, предложила следующее: железный катализатор, в который добавлялись оксиды калия и алюминия и который поныне считается одним из наилучших, обеспечивающих получение аммиака в промышленности.

9.09.1913 начал свою работу первый в мире завод, применяющий технологию каталитического синтеза. Постепенно наращивались производственные мощности, и к концу 1917 года вырабатывалось 7 тыс. т аммиака за месяц. В первый год работы завода этот показатель составлял всего 300 т в месяц.

Впоследствии во всех других странах тоже стали применять технологию синтеза с применением катализаторов, которая по своей сути не очень отличалась от техники Габера - Боша. Применение высокого давления и циркуляционных процессов происходило в любом технологическом процессе.

Внедрение синтеза в России

В России также применялся синтез с применением катализаторов, обеспечивающих получение аммиака. Реакция имеет такой вид:

В России самый первый завод аммиачного синтеза начал свою работу в 1928 году в Чернореченске, а далее были построены производства во многих других городах.

Практическая работа по получению аммиака постоянно набирает обороты. В период с 1960 по 1970 год синтез увеличился почти в 7 раз.

В стране для успешного получения, собирания и распознавания аммиака используют смешанные каталитические вещества. Изучение их состава осуществляет группа ученых под предводительством С. С. Лачинова. Именно эта группа нашла наиболее эффективные материалы для технологии осуществления синтеза.

Также постоянно ведутся исследования кинетики процесса. Научные разработки в этой области вели М. И. Темкин, а также его сотрудники. В 1938 году этот ученый вместе со своим коллегой В. М. Пыжевым сделал важное открытие, совершенствуя получение аммиака. Уравнение кинетики синтеза, составленное этими химиками, применяется отныне по всему миру.

Современный процесс синтеза

Процесс получения аммиака при помощи катализатора, применяемый в сегодняшнем производстве, имеет обратимый характер. Поэтому очень актуальным является вопрос оптимального уровня воздействия показателей на достижение максимального выхода продукции.

Процесс протекает при высокой температуре: 400-500 ˚С. Для обеспечения необходимой скорости прохождения реакции применяется катализатор. Современное получение NH 3 предполагает использование высокого давления - около 100-300 атм.

Совместно с применением циркуляционной системы можно получить достаточно большую массу превращенных в аммиак первоначальных материалов.

Современное производство

Система работы любого аммиачного завода достаточно сложная и содержит в себе нескольких этапов. Технология получения искомого вещества осуществляется в 6 этапов. В процессе проведения синтеза происходит получение, собирание и распознавание аммиака.

Первоначальная стадия заключается в извлечении серы из природного газа при помощи десульфуратора. Эта манипуляция требуется вследствие того, что сера является каталитическим ядом и убивает никелевый катализатор еще на стадии извлечения водорода.

На втором этапе проходит конверсия метана, которая протекает с применением высокой температуры и давления при использовании никелевого катализатора.

На третьей стадии случается частичное выгорание водорода в кислороде воздуха. В результате производится смесь водяного пара, оксида углерода, а также азота.

На четвертом этапе происходит реакция сдвига, которая проходит при различных катализаторах и двух отличных температурных режимах. Первоначально применяется Fe 3 O 4 , и процесс протекает при температуре 400 ˚С. Во второй стадии участвует более эффективный по своему воздействию медный катализатор, что позволяет осуществление производства при низких температурах.

Следующая пятая стадия предполагает избавление от ненужного оксида углерода (VI) из смеси газа путем применения технологии поглощения раствором щелочи.

На завершающем этапе оксид углерода (II) удаляется при использовании реакции конверсии водорода в метан через никелевый катализатор и большую температуру.

Полученная в результате всех манипуляций смесь газа содержит 75 % водорода и 25 % азота. Ее сжимают под большим давлением, а затем остужают.

Именно эти манипуляции описывает формула выделения аммиака:

N 2 + 3H 2 ↔ 2 NH 3 + 45,9 кДж

Хоть этот процесс выглядит не очень сложным, однако все вышеперечисленные действия по ее осуществлению говорят о сложности получения аммиака в промышленном масштабе.

На качество конечного продукта влияет отсутствие в сырье примесей.

Пройдя долгий путь от небольшого лабораторного опыта до масштабного производства, получение аммиака на сегодняшний день является востребованной и незаменимой отраслью химической промышленности. Этот процесс постоянно совершенствуется, обеспечивая качество, экономичность и необходимое количество продукта для каждой ячейки народного хозяйства.

Летучим характеристическим водородным соединением азота является аммиак. По значимости в неорганической химической индустрии и неорганической химии аммиак – самое важное водородное соединение азота. По своей химической природе он представляет собой нитрид водорода H 3 N. В химическом строении аммиакаsp 3 -гибридные орбитали атома азота образуют три σ-связи с тремя атомами водорода, которые занимают три вершины чуть искаженного тетраэдра.

Четвертая вершина тетраэдра занята неподеленной электронной парой азота, что обеспечивает химическую ненасыщенность и реакционноспособность молекул аммиака, а также большую величину электрического момента диполя.

При обычных условиях аммиак - бесцветный газ с резким запахом. Он токсичен: раздражает слизистые оболочки, а острое отравление вызывает поражение глаз и воспаление легких. Вследствие полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим растворителем. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, йод, многие соли и кислоты. По растворимости в воде аммиак превосходит любой другой газ. Этот раствор называется аммиачной водой, или нашатырным спиртом. Прекрасная растворимость аммиака в воде обусловлена возникновением межмолекулярных водородных связей.

Аммиак обладает основными свойствами:

    Взаимодействие аммиака с водой:

NH 3 +HOH ⇄ NH 4 OH ⇄ NH 4 + +OH -

    Взаимодействие с галогеноводородами:

NH 3 +HCl ⇄NH 4 Cl

    Взаимодействие с кислотами (в результате образуются средние и кислые соли):

NH 3 +H 3 PO 4 → (NH 4) 3 PO 4 фосфат аммония

NH 3 +H 3 PO 4 → (NH 4) 2 HPO 4 гидрофосфат аммония

NH 3 +H 3 PO 4 → (NH 4)H 2 PO 4 дигидрофосфат аммония

    Аммиак взаимодействует с солями некоторых металлов с образованием комплексных соединений – аммиакатов:

CuSO 4 + 4NH 3 → SO 4 сульфат тетрааммин меди (II )

AgCl+ 2NH 3 → Clхлорид диаммин серебра (I )

Все приведенные выше реакции являются реакциями присоединения.

Окислительно-восстановительные свойства:

В молекуле аммиака NH 3 азот имеет степень окисления -3, поэтому в окислительно-восстановительных реакциях он может только отдавать электроны и является только восстановителем.

    Аммиак восстанавливает некоторые металлы из их оксидов:

2NH 3 + 3CuO → N 2 +3Cu +3H 2 O

    Аммиак в присутствии катализатора окисляется до монооксида азота NO:

4NH 3 + 5O 2 → 4NO+ 6H 2 O

    Аммиак окисляется кислородом без катализатора до азота:

4NH 3 + 3O 2 → 2N 2 + 6H 2 O

21. Водородные соединения галогенов. 22. Галогеноводородные кислоты.

Галогеноводороды - бесцветные газы, с резким запахом, легко растворимы в воде.. Фтороводород смешивается с водой в любых соотношениях. Высокая растворимость этих соединений в воде позволяет получать концентрированные растворы.

При растворении в воде галогеноводороды диссоциируют по типу кислот. HF относится к слабо диссоциированным соединениям, что объясняется особой прочностью связи. Остальные же растворы галогеноводородов относятся к числу сильных кислот. HF - фтороводородная (плавиковая) кислота НСl- хлороводородная (соляная) кислота HBr - бромоводородная кислота HI - иодоводородная кислота

Сила кислот в ряду HF - НСl - HBr - HI возрастает, что объясняется уменьшением в том же направлении энергии связи и увеличением межъядерного расстояния. HI - самая сильная кислота из ряда галогеноводородных кислот.

Поляризуемость растет вследствие того, что вода поляризует больше ту связь, чья длина больше. Соли галогеноводородных кислот носят соответственно следующие названия: фториды, хлориды, бромиды, иодиды.

Химические свойства галогеноводородных кислот

В сухом виде галогеноводороды не действуют на большинство металлов.

1. Водные растворы галогеноводородов обладают свойствами бескислородных кислот. Энергично взаимодействуют со многими металлами, их оксидами и гидроксидами; на металлы, стоящие в электрохимическом ряду напряжений металлов после водорода, не действуют. Взаимодействуют с некоторыми солями и газами.

Фтороводородная кислота разрушает стекло и силикаты:

SiO2+4HF=SiF4+2Н2O

Поэтому она не может храниться в стеклянной посуде.

2. В окислительно-восстановительных реакциях галогеноводородные кислоты ведут себя как восстановители, причем восстановительная активность в ряду Сl-, Br-, I- повышается.

Получение

Фтороводород получают действием концентрированной серной кислоты на плавиковый шпат:

CaF2+H2SO4=CaSO4+2HF

Хлороводород получают непосредственным взаимодействием водорода с хлором:

Это синтетический способ получения.

Сульфатный способ основан на реакции концентрированной серной кислоты с NaCl.

При небольшом нагревании реакция протекает с образованием НСl и NaHSO4.

NaCl+H2SO4=NaHSO4+HCl

При более высокой температуре протекает вторая стадия реакции:

NaCl+NaHSO4=Na2SO4+HCl

Но аналогичным способом нельзя получить HBr и HI, т.к. их соединения с металлами при взаимодействии с концентрировавной серной кислотой окисляются, т.к. I- и Br- являются сильными восстановителями.

2NaBr-1+2H2S+6O4(к)=Br02+S+4O2+Na2SO4+2Н2O

Бромоводород и иодоводород получают гидролизом PBr3 и PI3: PBr3+3Н2O=3HBr+Н3PO3 PI3+3Н2О=3HI+Н3РO3

– бесцветный газ с резким запахом, температура плавления –80 ° С, температура кипения – 36 ° С, хорошо растворяется в воде, спирте и ряде других органических растворителей. Синтезируют из азота и водорода. В природе образуется при разложении азотсодержащих органических соединений. Резкий запах аммиака известен человеку с доисторических времен, так как этот газ образуется в значительных количествах при гниении, разложении и сухой перегонке содержащих азот органических соединений, например мочевины или белков. Не исключено, что на ранних стадиях эволюции Земли в ее атмосфере было довольно много аммиака. Однако и сейчас ничтожные количества этого газа всегда можно обнаружить в воздухе и в дождевой воде, поскольку он непрерывно образуется при разложении животных и растительных белков. На некоторых планетах Солнечной системы ситуация иная: астрономы считают, что значительная часть масс Юпитера и Сатурна приходится на твердый аммиак.

Впервые аммиак был получен в чистом виде в 1774 английским химиком

Джозефом Пристли . Он нагревал нашатырь (хлорид аммония) с гашеной известью (гидроксид кальция). Реакцию 2NH 4 Cl + Ca(OH) 2 ® NH 3 + CaCl 2 до сих пор используют в лабораториях, если требуется получить небольшие количества этого газа; другой удобный способ получения аммиака – гидролиз нитрида магния: Mg 3 N 2 + 6H 2 O ® 2NH 3 + 3Mg(OH) 2 . Выделявшийся аммиак Пристли собирал над ртутью. Он назвал его «щелочным воздухом», поскольку водный раствор аммиака имел все признаки щелочи. В 1784 французский химик Клод Луи Бертолле с помощью электрического разряда разложил аммиак на элементы и установил таким образом состав этого газа, который в 1787 получил официальное название «аммониак» – от латинского названия нашатыря – sal ammoniac; эту соль получали близ храма бога Амона в Египте. Это название сохраняется и ныне в большинстве западноевропейских языков (нем. Ammoniak, англ. ammonia, фр. ammoniaque); сокращенное название «аммиак» которым мы пользуемся, ввел в обиход в 1801 русский химик Яков Дмитриевич Захаров, который впервые разработал систему русской химической номенклатуры.

Впрочем, у этой истории, несомненно, есть и предыстория. Так, за сто лет до Пристли его соотечественник

Роберт Бойль наблюдал, как дымится палочка, смоченная соляной кислотой и подставленная под струю пахучего газа, образующегося при сжигании навоза. В реакции NH 3 + HCl ® NH 4 Cl «дым» создают мельчайшие частички хлорида аммония, что дало повод для разработки занимательного опыта, «опровергающего» поговорку «нет дыма без огня». Но и Бойль вряд ли был первым исследователем еще не открытого аммиака. Ведь получали-то его и раньше, а водный раствор аммиака – нашатырный спирт чуть ли не с древних времен использовали как особую щелочь при обработке и окраске шерсти.

К началу 19 в. аммиачную воду получали из угля уже в значительных количествах в качестве побочного продукта при производстве осветительного газа. Но откуда в угле взяться аммиаку? Его там и нет, но уголь содержит заметные количества сложных органических соединений, в состав которых входят помимо других элементов азот и водород. Эти элементы и образуют аммиак при сильном нагреве (пиролизе) угля. В 19 в. на газовых заводах при нагревании без доступа воздуха из одной тонны хорошего каменного угля получали до 700 кг кокса и свыше 200 кг (300 м

3 ) газообразных продуктов пиролиза. Горячие газы охлаждали, а затем пропускали через воду, при этом получали примерно 50 кг каменноугольной смолы и 40 кг аммиачной воды.

Однако получаемого таким способом аммиака явно не хватало, поэтому были разработаны химические методы его синтеза, например из цианамида кальция: CaCN

2 + 3H 2 O ® 2NH 3 + CaCO 3 или из цианида натрия: NaCN + 2H 2 O ® HCOONa + NH 3 . Эти методы долгое время считались перспективными, поскольку исходные вещества получали из доступного сырья.

В 1901 французский химик Анри Ле Шателье взял патент на способ получения аммиака из азота и водорода в присутствии катализатора. Однако до промышленного использования этого процесса было еще далеко: лишь в 1913 заработала первая промышленная установка синтеза аммиака (

см . ГАБЕР, ФРИЦ ). В настоящее время аммиак синтезируют из элементов на железном катализаторе с добавками при температуре 420–500 ° С и давлении около 300 атм (на некоторых заводах давление может достигать 1000 атм).

Аммиак – бесцветный газ, который легко сжижается при охлаждении до –33,3

° С или при комнатной температуре при повышении давления примерно до 10 атм. Замерзает аммиак при охлаждении до –77,7 ° С. Молекула NH 3 имеет форму трехгранной пирамиды с атомом азота в вершине. Однако, в отличие от пирамиды, склеенной, к примеру, из бумаги, молекула NH 3 с легкостью «вывертывается наизнанку», наподобие зонтика, и при комнатной температуре она проделывает такое превращение с огромной частотой – почти 24 млрд. раз в секунду! Такой процесс называется инверсией; его существование доказывается тем, что при замещении двух атомов водорода, например, на метильную и этильную группы получается только один изомер метилэтиламина. Если бы не было инверсии, существовали бы два пространственных изомера этого вещества, которые отличались бы друг от друга как предмет и его зеркальное изображение. С увеличением размера заместителей инверсия замедляется, а в случае «жестких» объемистых заместителей она становится невозможной, и тогда могут существовать оптические изомеры; роль четвертого заместителя играет неподеленная пара электронов у атома азота. Впервые такое производное аммиака синтезировал в 1944 швейцарский химик Владимир Прелог . Между молекулами аммиака существуют водородные связи. Хотя они и не такие прочные, как между молекулами воды, эти связи способствуют сильному притяжению между молекулами. Поэтому физические свойства аммиака во многом аномальны по сравнению со свойствами других гидридов элементов той же подгруппы (PH 3 , SbH 3 , AsH 3 ). Так, у ближайшего аналога аммиака – фосфина РН 3 температура кипения равна – 87,4 ° С, а температура плавления – 133,8 ° С, несмотря на то, что молекула PH 3 вдвое тяжелее молекулы NH 3 . В твердом аммиаке каждый атом азота связан с шестью атомами водорода тремя ковалентными и тремя водородными связями. При плавлении аммиака рвутся только 26% всех водородных связей, еще 7% разрываются при нагреве жидкости до температуры кипения. И лишь выше этой температуры исчезают почти все оставшиеся между молекулами связи.

Среди прочих газов аммиак выделяется своей огромной растворимостью в воде: при нормальных условиях 1 мл воды способен поглотить больше литра газообразного аммиака (точнее, 1170 мл) с образованием 42,8%-ного раствора. Если рассчитать соотношение NH

3 и H 2 O в насыщенном при нормальных условиях растворе, то получится, что одна молекула аммиака приходится на одну молекулу воды. При сильном охлаждении такого раствора (примерно до –80 ° C) образуютсмя кристаллы гидрата аммиака NH 3 ·H 2 O Известен также гидрат состава 2NH 3 ·H 2 O. Водные растворы аммиака обладают уникальным среди всех щелочей свойством: их плотность снижается с увеличением концентрации раствора (от 0,99 г/см 3 для 1%-ного раствора до 0,73 г/см 3 для 70%-ного). В то же время аммиак довольно легко «выгнать» назад из водного раствора: при комнатной температуре давление пара над 25%-ным раствором составляет две трети атмосферного, над 4%-ным раствором – 26 мм рт.ст. (3500 Па) и даже над очень разбавленным 0,4%-ным раствором оно все еще равно 3 мм рт.ст. (400 Па). Неудивительно, что даже слабые водные растворы аммиака имеют отчетливый запах «нашатырного спирта», а при хранении в неплотно закупоренной посуде они довольно быстро «выдыхаются». Непродолжительным кипячением можно полностью удалить аммиак из воды.

На высокой растворимости аммиака в воде основан красивый демонстрационный опыт. Если в перевернутую колбу с аммиаком через узкую трубочку, соединяющую колбу с сосудом с водой, впустить несколько капель воды, газ быстро растворится в ней, давление понизится, и под действием атмосферного давления вода из сосуда с растворенным в ней индикатором (фенолфталеином) с силой устремится в колбу. Там она тут же окрасится в малиновый цвет – из-за образования щелочного раствора.

Аммиак химически довольно активен и вступает во взаимодействие со многими веществами. В чистом кислороде он сгорает бледно-желтым пламенем, превращаясь, в основном, в азот и воду. Смеси аммиака с воздухом при его содержании от 15 до 28% взрывоопасны. В присутствии катализаторов реакция с кислородом приводит к оксидам азота. При растворении аммиака в воде образуется щелочной раствор, который иногда называют гидроксидом аммония. Однако это название не вполне точное, поскольку в растворе сначала образуется гидрат NH

3 ·H 2 O, который затем частично распадается на ионы NH 4 + и OH – . Условно NH 4 OH считают слабым основанием, при расчете его степени диссоциации предполагается, что весь аммиак в растворе находится в виде NH 4 OH, а не в виде гидрата.

Аммиак благодаря неподеленной паре электронов образует огромное количество комплексных соединений с ионами металлов – так называемых амминокомплексов или аммиакатов. В отличие от органических аминов, в этих комплексах с атомом азота всегда связаны три атома водорода.

Как и в случае воды, комплексообразование с аммиаком часто сопровождается изменением окраски вещества. Так, белый порошок сульфата меди при растворении в воде дает голубой раствор медного купороса в результате образования аквакомплекса 2+ . А при добавлении аммиака этот раствор окрашивается в интенсивный сине-фиолетовый цвет, принадлежащий амминокомплексу 2+ . Аналогично безводный хлорид никеля(II) имеет золотисто-желтый цвет, кристаллогидрат Cl 2 – зеленый, а аммиакат Cl 2 – светло-голубой. Многие амминокомплексы достаточно устойчивы и могут быть получены в твердом состоянии. Твердый комплекс аммиака с хлоридом серебра был использован Майклом Фарадеем для сжижения аммиака. Фарадей нагревал комплексную соль в одном колене запаянной стеклянной трубки, а в другом колене, помещенном в охлаждающую смесь, собирался под давлением жидкий аммиак. Необычными свойствами обладает аммиачный комплекс тиоцианата (роданида) аммония. Если сухую соль NH 4 NCS, охлажденную до 0 ° C, поместить в атмосферу аммиака, то соль «растает» и превратится в жидкость, содержащую 45% аммиака по массе. Эту жидкость можно хранить в склянке с притертой пробкой и использовать в качестве своеобразного «склада» аммиака.

Сильные водородные связи приводят к сравнительно высокой (по сравнению с другими газами) теплоте испарения аммиака – 23,3 кДж/моль. Это в 4 раза больше теплоты испарения жидкого азота и в 280 раз больше, чем у жидкого гелия. Поэтому жидкий гелий вообще невозможно налить в обычный стакан – он немедленно испарится. С жидким азотом такой опыт провести можно, но значительная его часть испарится, охлаждая сосуд, а оставшаяся жидкость тоже выкипит довольно быстро. Поэтому обычно сжиженные газы в лабораториях хранят в специальных сосудах Дьюара с двойными стенками, между которыми – вакуум. Жидкий аммиак, в отличие от других сжиженных газов, можно держать в обычной химической посуде – стаканах, колбах, он при этом испаряется не слишком быстро. Если же налить его в сосуд Дьюара, то в нем он будет храниться очень долго. И еще одно удобное свойство жидкого аммиака: при комнатной температуре давление пара над ним сравнительно невелико, поэтому при длительных экспериментах с ним можно работать в запаянных стеклянных ампулах, которые такое давление легко выдерживают (попытка проделать подобный эксперимент с жидким азотом или кислородом неминуемо привела бы к взрыву). Большая теплота испарения жидкого аммиака позволяет использовать это вещество в качестве хладагента в различных холодильных установках; испаряясь, жидкий аммиак очень сильно охлаждается. В домашних холодильниках раньше тоже был аммиак (теперь в основном – фреоны). Хранят жидкий аммиак в герметичных баллонах.

Внешне жидкий аммиак похож на воду. Сходство этим не ограничивается. Как и вода, жидкий аммиак – прекрасный растворитель как для ионных, так и для неполярных неорганических и органических соединений. В нем легко растворяются многие соли, которые, как и в водных растворах, диссоциируют на ионы. Однако химические реакции в жидком аммиаке часто протекают совсем не так, как в воде. Прежде всего это связано с тем, что растворимость одних и тех же веществ в воде и в жидком аммиаке может различаться очень сильно, что видно из следующей таблицы, в которой приведена растворимость (в граммах на 100 г растворителя) некоторых солей в воде и в жидком аммиаке при 20

° С:
Вещество AgI Ba(NO 3) 2 KI NaCl KCl BaCl 2 ZnCl 2
Растворимость в воде 0 9 144 36 34 36 367
Растворимость в аммиаке 207 97 182 3 0,04 0 0
Поэтому в жидком аммиаке легко протекают такие обменные реакции, которые немыслимы для водных растворов, например, Ba(NO 3 ) 2 + 2AgCl ® BaCl 2 + 2AgNO 3 . Молекула NH 3 – сильный акцептор ионов водорода, поэтому если в жидком аммиаке растворить слабую (в случае водных растворов) уксусную кислоту, то она будет диссоциировать полностью, то есть станет очень сильной кислотой: CH 3 COOH + NH 3 ® NH 4 + + CH 3 COO – . В среде жидкого аммиака значительно усиливаются (по сравнению с водными растворами) и кислотные свойства солей аммония. Ион аммония в жидком аммиаке обладает многими свойствами, характерными для иона водорода в водных растворах. Поэтому в жидком аммиаке нитрат аммония легко реагирует, например, с магнием с выделением водорода или с пероксидом натрия: 2NH 4 NO 3 + Mg ® Mg(NO 3 ) 2 + 2NH 3 + H 2 ; Na 2 O 2 + 2NH 4 NO 3 ® 2NaNO 3 + H 2 O 2 + 2NH 3 . С помощью реакций в жидком аммиаке впервые были выделены пероксиды магния, кадмия и цинка: Zn(NO 3 ) 2 + 2KO 2 ® ZnO 2 + 2KNO 3 + O 2 , получен в чистом виде кристаллический нитрит аммония: NaNO 2 + NH 4 Cl ® NH 4 NO 2 + NaCl, проведены многие другие необычные превращения, например, 2K + 2CO ® K 2 C 2 O 2 . Последнее соединение содержит тройную ацетиленовую связь и имеет строение K +– OС є CO – K + . Большое сродство жидкого аммиака к ионам Н + позволяет провести эффектный опыт по «пластификации» дерева. Дерево в основном состоит из целлюлозы: длинные полимерные цепи молекул целлюлозы соединяются между собой с помощью водородных связей между гидроксильными группами –OH (иногда их называют водородными мостиками). Одна водородная связь довольно слабая, но так как молекулярная масса целлюлозы достигает 2 миллионов, а мономерных звеньев (глюкозных остатков) в молекуле свыше 10 тысяч, длинные молекулы целлюлозы сцеплены друг с другом очень прочно. Жидкий аммиак с легкостью разрушает водородные мостики, связывая атомы водорода в ионы NH 4 + , и в результате молекулы целлюлозы приобретают способность скользить относительно друг друга. Если деревянную палочку опустить на некоторое время в жидкий аммиак, то ее можно гнуть как угодно, как будто она сделана не из дерева, а из алюминия. На воздухе аммиак через несколько минут испарится, и водородные связи снова восстановятся, но уже в другом месте, а деревянная палочка вновь станет жесткой и при этом сохранит ту форму, которую ей придали.

Из растворов различных веществ в жидком аммиаке, без сомнения, самые интересные – это растворы щелочных металлов. Такие растворы вызывают живейший интерес ученых уже более ста лет. Впервые растворы натрия и калия в жидком аммиаке были получены в 1864. Спустя несколько лет было обнаружено, что если дать аммиаку спокойно испариться, то в осадке останется чистый металл, как это бывает с раствором соли в воде. Такая аналогия, однако, не

совсем точна: щелочные металлы, хотя и медленно, с аммиаком все же реагируют с выделением водорода и образованием амидов: 2K + 2NH 3 ® 2KNH 2 + H 2 . Амиды – стабильные кристаллические вещества, энергично взаимодействующие с водой с выделением аммиака: KNH 2 + H 2 O ® NH 3 + KOH. При растворении металла в жидком аммиаке объем раствора всегда больше суммарного объема компонентов. В результате такого разбухания раствора его плотность непрерывно падает с увеличением концентрации (чего не бывает у водных растворов солей и других твердых соединений). Концентрированный раствор лития в жидком аммиаке – самая легкая при обычных условиях жидкость, ее плотность при 20 ° C – всего лишь 0,48 г/см 3 (легче этого раствора только сжиженные при низких температурах водород, гелий и метан).

Свойства растворов щелочных металлов в жидком аммиаке сильно зависят от концентрации. В разбавленных растворах находятся катионы металла, а вместо анионов – электроны, которые, однако, не могут свободно передвигаться, так как связаны с молекулами аммиака. Именно такие связанные (сольватированные) электроны придают разбавленным растворам щелочных металлов в жидком аммиаке красивый синий цвет. Электрический ток такие растворы проводят плохо. Но с повышением концентрации растворенного металла, когда электроны приобретают способность перемещаться в растворе, электропроводность увеличивается исключительно сильно – иногда в триллионы раз, приближаясь к электропроводности чистых металлов! Разбавленные и концентрированные растворы щелочных металлов в жидком аммиаке сильно различаются и по другим физическим свойствам. Так, растворы с концентрацией более 3 моль/л называют иногда жидкими металлами: они имеют отчетливый металлический блеск с золотисто-бронзовым отливом. Иногда даже трудно поверить, что это растворы одного и того же вещества в одном и том же растворителе. И здесь литию принадлежит своеобразный рекорд: его концентрированный раствор в жидком аммиаке – самый легкоплавкий «металл», который замерзает лишь при –183

° C, то есть при температуре сжижения кислорода.

Много ли металла может растворить жидкий аммиак? Это в основном зависит от температуры. При температуре кипения насыщенный раствор содержит примерно 15% (мольных) щелочного металла. С повышением температуры растворимость быстро увеличивается и становится бесконечно большой при температуре плавления металла. Это значит, что расплавленный щелочной металл (цезий, например, уже при 28,3

° C) смешивается с жидким аммиаком в любых соотношениях. Аммиак из концентрированных растворов испаряется медленно, так как давление его насыщенных паров стремится к нулю при увеличении концентрации металла.

Еще один очень интересный факт: разбавленные и концентрированные растворы щелочных металлов в жидком аммиаке не смешиваются друг с другом. Для водных растворов это редкое явление. Если же, допустим, в 100 г жидкого аммиака внести 4 г натрия при температуре –43

° C, то образующийся раствор сам собой расслоится на две жидкие фазы. Одна из них, более концентрированная, но менее плотная, окажется сверху, а разбавленный раствор с большей плотностью – внизу. Заметить границу между растворами легко: верхняя жидкость обладает металлическим бронзовым блеском, а нижняя имеет чернильно-синий цвет.

По объемам производства аммиак занимает одно из первых мест; ежегодно во всем мире получают около 100 миллионов тонн этого соединения. Аммиак выпускается в жидком виде или в виде водного раствора – аммиачной воды, которая обычно содержит 25% NH

3 . Огромные количества аммиака далее используются для получения азотной кислоты, которая идет на производство удобрений и множества других продуктов. Аммиачную воду применяют также непосредственно в виде удобрения, а иногда поля поливают из цистерн непосредственно жидким аммиаком. Из аммиака получают различные соли аммония, мочевину, уротропин. Его применяют также в качестве дешевого хладагента в промышленных холодильных установках.

Аммиак используется также для получения синтетических волокон, например, найлона и капрона. В легкой промышленности он используется при очистке и крашении хлопка, шерсти и шелка. В нефтехимической промышленности аммиак используют для нейтрализации кислотных отходов, а в производстве природного каучука аммиак помогает сохранить латекс в процессе его перевозки от плантации до завода. Аммиак используется также при производстве соды по методу

Сольве . В сталелитейной промышленности аммиак используют для азотирования – насыщения поверхностных слоев стали азотом, что значительно увеличивает ее твердость.

Медики используют водные растворы аммиака (нашатырный спирт) в повседневной практике: ватка, смоченная в нашатырном спирте, выводит человека из обморочного состояния. Для человека аммиак в такой дозе не опасен. Тем не менее этот газ токсичен. К счастью, человек способен почувствовать запах аммиака в воздухе уже

в ничтожной концентрации – 0,0005 мг/л, когда еще нет большой опасности для здоровья. При повышении концентрации в 100 раз (до 0,05 мг/л) проявляется раздражающее действие аммиака на слизистую оболочку глаз и верхних дыхательных путей, возможна даже рефлекторная остановка дыхания. Концентрацию 0,25 мг/л с трудом выдерживает в течение часа даже очень здоровый человек. Еще более высокие концентрации вызывают химические ожоги глаз и дыхательных путей и становятся опасными для жизни. Внешние признаки отравления аммиаком могут быть весьма необычными. У пострадавших, например, резко снижается слуховой порог: даже не слишком громкие звуки становятся невыносимы и могут вызвать судороги. Отравление аммиаком вызывает также сильное возбуждение, вплоть до буйного бреда , а последствия могут быть весьма тяжелыми – до снижения интеллекта и изменения личности. Очевидно, аммиак способен поражать жизненно важные центры, так что при работе с ним надо тщательно соблюдать меры предосторожности. Илья Леенсон ЛИТЕРАТУРА Малина И.К. Развитие исследований в области синтеза аммиака . М., Химия, 1973
Леенсон И.А. 100 вопросов и ответов по химии . М., АСТ – Астрель, 2002

АММИАК [сокращенно от греческого?μμωνιακ?ς; латинский sal ammoniacus; так назывался нашатырь (хлорид аммония), который получали путём сжигания верблюжьего навоза в оазисе Аммониум в Ливийской пустыне], простейшее химическое соединение азота с водородом, NH 3 ; многотоннажный продукт химической промышленности.

Свойства . Молекула NH 3 имеет форму правильной пирамиды с атомом азота в вершине; связи N—Н полярны, энергия связи N—Н 389,4 кДж/моль. У атома N имеется неподелённая пара электронов, которая обусловливает способность аммиака к образованию донорно-акцепторной и водородной связей. Молекула NH 3 способна к инверсии - «выворачиванию наизнанку» путём прохождения атома азота сквозь образованную атомами водорода плоскость основания пирамиды.

Аммиак - бесцветный газ с резким запахом; t пл -77,7°С; t кип -33,35°С; плотность газообразного NH 3 (при 0°С, 0,1 МПа) 0,7714 кг/м 3 ; теплота образования аммиака из элементов ΔН обр -45,94 кДж/моль. Сухая смесь аммиака с воздухом (15,5-28% по массе NH 3) способна взрываться. Жидкий NH 3 - бесцветная, сильно преломляющая свет жидкость, хороший растворитель для многих органических и неорганических соединений. Аммиак легко растворим в воде (33,1% по массе при 20°С), несколько хуже в спирте, ацетоне, бензоле, хлороформе. Раствор аммиака в воде аммиачная вода - бесцветная жидкость с запахом аммиака; раствор, содержащий 10% по массе NH 3 , имеет торговое название нашатырный спирт. В водном растворе аммиака частично ионизирован на NH + 4 и ОН - , что обусловливает щелочную реакцию раствора (рК 9,247).

Разложение аммиака на водород и азот становится заметным при температуре выше 1200°С, в присутствии катализаторов (Fe, Ni) - выше 400°С. Аммиак весьма реакционно-способное соединение. Для него типичны реакции присоединения, в частности протона при взаимодействии с кислотами. В результате образуются соли аммония, которые по многим свойствам подобны солям щелочных металлов. Аммиак - основание Льюиса, присоединяет не только Н + , но и другие акцепторы электронов, например BF 3 с образованием BF 3 ?NH 3 . Действием NH 3 на простые или комплексные соли металлов получают аммиакаты, например цис-. Для аммиака характерны также реакции замещения. Щелочные и щёлочноземельные металлы образуют с NH 3 амиды (например, NaNH 2). При нагревании в атмосфере аммиака многие металлы и неметаллы (Zn, Cd, Fe, Cr, В, Si и др.) образуют нитриды (например, BN). При температуре около 1000°С NH 3 реагирует с углеродом, образуя циановодород HCN и частично разлагаясь на N 2 и Н 2 . Образует с СО 2 карбамат аммония NH 2 COONH 4 , который при температуре 160-200°С и давлении до 40 МПа распадается на воду и мочевину. Водород в аммиаке может быть замещён галогенами. Аммиак горит в атмосфере О 2 , образуя воду и N 2 . Каталитическим окислением аммиака (катализатор Pt) получают NO (реакцию используют в производстве азотной кислоты), окислением аммиака в смеси с метаном - HCN.

Получение и применение . В природе аммиак образуется при разложении азотсодержащих соединений. В 1774 Дж. Пристли впервые собрал в ртутной ванне аммиак, образующийся при действии извести на хлорид аммония. Старейший промышленный способ получения NH 3 - выделение аммиака из отходящих газов при коксовании угля.

Основной современный способ получения аммиака - синтез его из азота и водорода, предложенный в 1908 Ф. Габером. Синтез аммиака в промышленности осуществляют по реакции N 2 + ЗН 2 →←2NH 3 . Сдвигу равновесия вправо способствуют повышение давления и понижение температуры. Процесс проводят при давлении около 30 МПа и температуре 450-500°С в присутствии катализатора - Fe, активированного оксидами К 2 О, Al 2 О 3 , СаО и др. При однократном прохождении через массу катализатора возможно превращение в аммиак лишь 20-25% исходной газовой смеси; для полного превращения необходима многократная циркуляция. Основное сырьё для получения Н 2 в производстве аммиака - природный горючий газ, перерабатываемый методом двухступенчатой парогазовой конверсии метана.

Производство аммиака включает следующие стадии: очистку природного газа от сернистых соединений каталитическим гидрированием их до Н 2 S с последующим поглощением аммиака ZnO; паровую конверсию природного газа под давлением 3.8 МПа при температуре 860°С на катализаторе Ni-Al в трубчатой печи (первичный риформинг); паровоздушную конверсию остаточного метана в шахтном конвертере (вторичный риформинг) при 990-1000°С и 3,3 МПа на катализаторе Ni-Al; на этом этапе водород обогащается азотом из атмосферного воздуха для получения смеси азота с водородом (соотношение по объёму 1:3), поступающей на синтез NH 3 ; конверсию СО до СО 2 и Н 2 сначала при 450°С и 3,1 МПа на катализаторе Fe-Cr, затем при 200-260°С и 3,0 МПа на катализаторе Zn-Cr-Сu; очистку Н 2 от СО 2 абсорбцией раствором моноэтаноламина или горячим раствором К 2 СО 3 при 2,8 МПа; очистку смеси Н 2 и N 2 путём гидрирования от остаточных СО и СО 2 в присутствии катализатора Ni-Al при 280°С и 2,6 МПа; компримирование (сжатие) очищенного газа до 15-30 МПа и синтез аммиака на железном промотированном катализаторе при 400-500°С в реакторе синтеза с насадкой с радиальным или аксиальным ходом газа. Поставляемый в промышленность жидкий аммиак содержит не менее 99,96% по массе NH 3 . В аммиак, транспортируемый по трубопроводу, добавляется до 0,2-0,4% Н 2 О для ингибирования коррозии стали.

Аммиак применяют в производстве азотной кислоты, мочевины, солей аммония, аммофоса, уротропина, соды (по аммиачному методу), как жидкое удобрение, в качестве хладагента и пр. Пучок молекул NH 3 был использован в качестве рабочего вещества в первом квантовом генераторе - мазере (1954).

Аммиак токсичен. При содержании в воздухе 0,02% аммиака по объёму раздражает слизистые оболочки. Жидкий аммиак вызывает сильные ожоги кожи.

Мировое производство аммиака (в пересчёте на N) около 125,7 миллион тонн/год (2001), в том числе в Российской Федерации - 11 миллион т/год.

Лит.: Теплофизические свойства аммиака. М., 1978; Синтез аммиака. М., 1982.

А. И. Михайличенко, Л. Д. Кузнецов.

ОПРЕДЕЛЕНИЕ

Аммиак (нитрид водовода) – соединение азота с водородом, имеющее химическую формулу NH. Форма молекулы напоминает тригональную пирамиду, в вершине которой расположен атом азота.

Физические свойства аммиака

Аммиак (NH 3) – бесцветный газ с резким запахом (запах «нашатырного спирта»), легче воздуха, хорошо растворим в воде (один объем воды растворят до 700 объемов аммиака). Концентрированный раствор аммиака содержит 25% (массовых) аммиака и имеет плотность 0,91 г/см 3 .

Строение молекулы аммиака

Связи между атомами в молекуле аммиака – ковалентные. Общий вид молекулы AB 3 , следовательно, чтобы определить тип гибридизации и строение молекулы можно использовать метод валентных связей и метод Гиллеспи:

7 N 1s 2 2s 2 2p 3

В гибридизацию вступают все валентные орбитали атома азота, следовательно, тип гибридизации молекулы аммиака – sp 3 . Для определения структуры строения молекулы рассчитаем число неподеленных электронных пар:

НЕП = (5-3)/2 = 1

Следовательно, имеется одна неподеленная пара электронов. Аммиак имеет структуру типа AB 3 E – тригональной пирамиды.

Получение аммиака

Выделяют промышленные и лабораторные способы получения аммиака. В лаборатории аммиак получают действием щелочей на растворы солей аммония при нагревании:

NH 4 Cl + KOH = NH 3 + KCl + H 2 O

NH 4 + + OH — = NH 3 + H 2 O

Эта реакция является качественной на ионы аммония.

Химические свойства аммиака

В химическом отношении аммиак довольно активен: он вступает в реакции взаимодействия со многими веществами. Степень окисления азота в аммиаке «-3» — минимальная, поэтому аммиак проявляет только восстановительные свойства.

При нагревании аммиака с галогенами, оксидами тяжелых металлов и кислородом образуется азот:

2NH 3 + 3Br 2 = N 2 + 6HBr

2NH 3 + 3CuO = 3Cu + N 2 + 3H 2 O

4NH 3 +3O 2 = 2N 2 + 6H 2 O

В присутствии катализатора аммиак способен окисляться до оксида азота (II):

4NH 3 + 5O 2 = 4NO + 6H 2 O (катализатор – платина)

В отличие от водородных соединений неметаллов VI и VII групп, аммиак не проявляет кислотные свойства. Однако, атомы водорода в его молекуле все же способны замещаться на атомы металлов. При полном замещении водорода металлом происходит образование соединений, называемых нитридами, которые также можно получить и при непосредственном взаимодействии азота с металлом при высокой температуре.

Основные свойства аммиака обусловлены наличием неподеленной пары электронов у атома азота. Раствор аммиака в воде имеет щелочную среду:

NH 3 + H 2 O ↔ NH 4 OH ↔ NH 4 + + OH —

При взаимодействии аммиака с кислотами образуются соли аммония, которые при нагревании разлагаются:

NH 3 + HCl = NH 4 Cl

NH 4 Cl = NH 3 + HCl (при нагревании)

Примеры решения задач

ПРИМЕР 1

Задание Каковы масса и объем аммиака, которые потребуются для получения 5т нитрата аммония?
Решение Запишем уравнение реакции:

NH 3 + HNO 3 = NH 4 NO 3

Масса нитрата аммония, рассчитанная по уравнению:

m(NH 4 NO 3) = v(NH 4 NO 3)×M(NH 4 NO 3)

v(NH 4 NO 3) = 1моль

m(NH 4 NO 3) = 1×80 = 80 т

Масса аммиака, рассчитанная по уравнению:

m(NH 3) = v(NH 3)×M(NH 3)

v(NH 3) = 1моль

m(NH 3) = 1×17 = 17 т

Составим пропорцию и найдем массу аммиака:

х г NH 3 – 5 т NH 4 NO 3

17 т NH 3 – 80 т NH 4 NO 3

х = 17×5/80 = 1,06

m(NH 3) = 1,06 т

Найдем объем аммиака: