Информационно развлекательный портал
Поиск по сайту

Вид гибридизации атомных орбиталей. Типы гибридизации АО. Полярность молекул. Геометрическая структура молекул

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .

ГИБРИДИЗАЦИЯ - это явление взаимодействия между собой молекулярных орбиталей, близких по энергии и имеющих общие элементы симметрии, с образованием гибридных орбиталей с более низкой энергией.

Чем полнее в пространстве перекрываются друг с другом электронные облака, участвующие в химической связи, тем меньшим запасом энергии обладают электроны, находящиеся в области перекрывания и осуществляющие связь, и тем прочнее химическая связь между этими атомами

Иногда связь между атомами прочнее, чем этого можно было ожидать на основании расчета. Предполагается, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей (s, p, d) возникают новые атомные орбитали промежуточной формы, которые называются гибридными .

Перестройка различных атомных орбиталей в новые орбитали, усредненные по форме называется гибридизацией .

Число гибридных орбиталей равно числу исходных. Так, при комбинации s- и р-орбиталей (sp-гиб­ридизация) возникают две гибридные орбитали, которые ориентируются под углом 180° друг к другу, рис.3, табл. 5 и 6.

(s+p)-орбитали Две sp- орбитали Две sp-гибридные

орбитали

Рисунок 3 – sp – Гибридизация валентных орбиталей


Таблица 6 – Образование гибридных орбиталей


Таблица 7 – Образование некоторых молекул V и VI периодов

Химическая связь, образуемая электронами гибридных орбиталей, прочнее связи с участием электронов негибридных орбиталей, так как при гибридизации перекрывание происходит в большей степени. Гибридные орбитали образуют только s-связи .

Подвергаться гибридизации могут орбитали, которые имеют близкие энергии. У атомов с малым значением заряд ядра для гибридизации пригодны только s– и р –орбитали. Это наиболее характерно для элементов второго периода II – VI групп, табл. 6 и 7.

В группах сверху вниз с увеличением радиуса атома способность образовывать ковалентные связи ослабевавает, усиливается различие в энергиях s - и р-электронов, уменьшается возможность их гибридизации.

Электронные орбитали, участвующие в образовании связей, и их пространственная ориентация определяют геометрическую форму молекул.

Линейная форма молекул . Соединения, имеющие линейную форму молекул, образуются при перекрывании:

1. Двух s– орбиталей (s – s связь): Н 2 , Na 2 , K 2 и др.

2. s - и р–орбиталей (s – р связь): НС1, НВr и др.

3. Двух р– орбиталей (р – р связь): F 2 , C1 2 , Вr 2 и т.д.

s–s s–p р–р

Рисунок 4 – Линейные молекулы

Линейную форму молекул образуют также атомы некоторых элементов II группы с атомами водорода или галогенов (ВеН 2 , ВеГ 2 , ZnГ 2). Рассмотрим образование молекул ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона (2s l и 2р 1), следовательно, происходит sp–гибридизация, при которой образуются две sp-гибридные орбитали, расположенные относительно друг друга под углом 180° (см гибридизацию орбиталей). При взаимодействии бериллия с галогенами происходит перекрывая двух sp–гибридных орбиталей атома бериллия с р–орбиталями двух атомов хлора, в результате образуется молекула линейной формы, рис. 5.

Рисунок 5 – Линейная молекула BeCl 2

Треугольная форма молекул имеет место при образо­вании галогенидов бора, алюминия. Возбужденный атом бо­та имеет три неспаренных электрона (2s 1 и 2р 2), При образовании химических связей происходит sp 2 -гибридизация и образуются три sp 2 - гибиридные орбитали, которые лежат в одной плоскости и ориентированы друг к другу под углом 120°, рис. 6.

(s+p+p)- три sp 2 - гибрид­ные

орбитали орбитали

Рисунок 6 – sp 2 –Гибридизация валентных орбиталей (а) и

треугольная молекула ВСl 3 (б)

При взаимодействии бора с хлором происходит перекрывание трех sр 2 -гибридных орбиталей атома бора с р-орбиталями трех атомов хлора, в результате образуется молекула, имеющая форму плоского треугольника. Валентный угол в молекуле ВСl 3 равен 120°.

Тетраэдрическая форма молекулы характерна для соединений элементов IV группы главной подгруппы с галогенами, водородом. Так, атом углерода в возбужденном со­стоянии имеет четыре неспаренных электрона (2s 1 и 2р 3) следовательно, происходит sp-гибридизация, при которой образуются четыре гибридные орбитали, расположенные друг к другу под углом 109,28°, рис. 7.

(s+p+p+p)- четыре sp 3 -гибрид­ные

орбитали орбитали

Рисунок 7 – sp 3 –Гибридизация валентных орбиталей (а) и

тетраэдрическая молекула СН 4 (б)

При перекрывании четырех sp 3 -гибридных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуется молекула метана, которая имеет форму тетраэдра. Валентный угол равен 109,28°.

Рассмотренные геометрические формы молекул (линейные, треугольные, тетраэдрические) являются идеальными (правило Гиллеспи).

В отличие от выше рассмотренных соединений молекулы элементов V и VI групп главных подгрупп имеют валентные неподеленные пары электронов, поэтому углы между связями оказываются меньшими по сравнению с идеальным молекулами.

Пирамидальная форма молекул имеет место при образовании водородных соединений элементов V групп главной подгруппы. При образовании химической связи, например, у атома азота также как и у атома углерода происходит sp 3 -гибридизация и образуется четыре sp 3 -гибридные орбитали, которые ориентированы под углом 109,28 о друг к другу. Но в отличие от атома углерода у атома азота в гибридизации принимают участие не только одноэлектронные орбитали (2р 3), но и двухэлектронная (2s 2). Поэтому из четырех sp 3 -гибридных орбиталей на трех находятся по одному электрону (одноэлектронная орбиталь), эти орбитали образуют связи с тремя атомами водорода. Четвертая орбиталь с неподелениой парой электронов не принимает участия в образовании связи. Молекула NH 3 имеет форму пирамиды, рис. 8.

Рисунок 8 – Пирамидальная молекула аммиака

В вершине пирамиды находится атом азота, а в углах (треугольника) основания – атомы водорода. Валентный угол равен 107,3°. Отклонение значения угла от тетраэдрического (109,28°) обусловлено отталкиванием между неподеленной парой электронов на четвертой sp 3 -гибридной ор­битали и связывающими парами на трех остальных орбиталях, т.е. sp 3 -гибридная орбиталь с неподеленной парой электронов отталкивает в направлении от себя три осталь­ные орбитали связи N–H, уменьшая угол до 107,3°.

В соответствии с правилом Гиллеспи: если централь­ный атом относится к элементам третьего или последующих периодов, а концевые атомы принадлежат менее электроотри­цательным элементам, чем галогены, то образование связей осуществляется через чистые р - орбитали и валентные углы становятся » 90°, следовательно, у аналогов азота (Р, As, Sb) гибридизация орбиталей в молекулах водородных соединений не наблюдается. Например, в образовании молекулы фосфина (РН 3) участвуют три неспаренных р-электрона (3s 2 и 3р 3), электронные орбитали которых расположены в трех взаимно перпендикулярных направле­ниях, и s-электроны трех атомов водо­рода. Связи располагаются вдоль трех осей р-орбиталей. Образовавшиеся молекулы имеют, как и молекулы NН 3 , пирамидальную форму, но в отличие от молекулы NН 3 , в молекуле РН 3 валентный угол равен 93,3°, а в соеди­нениях AsH 3 и SbH 3 – соответственно 91,8 и 91,3°, рис. 9 и табл. 4.

Рисунок 9 – Молекула РН 3

Неподеленная пара электронов будет занимать нес­вязывающую s- орбиталь.

Угловую форму молекул образуют водородные соединения элементов VI группы главной подгруппы. Рассмотренные особенности образования связей в соединениях элементов V группы характерны и для водородных соединений элементов VI группы. Так, в молекуле воды атом кислорода, так же как и атом азота, находится в состоянии sp 3 -гибридизаци. Из четырех sp 3 -гибридных орбитам на двух находится по одному электрону, эти орбитали образуют связи с двумя атомами водорода.

Две другие из четырех sp 3 -гибридных орбиталей содержат по неподеленной паре электронов и не принимав участия в образовании связи.

Молекула Н 2 О имеет угловую форму, валентный угол равен 104,5°. Отклонение значения угла от тетраэдрического в еще большей степени обусловлено отталкиванием от двух неподеленных пар электронов, рис. 10.

Рисунок 10 – Угловая молекула воды

Угловую форму молекул имеют H 2 S, H 2 Se, H 2 Te, только у аналогов кислорода образование связей в соединенн Н 2 Э осуществляется через чистые р-орбитали (правило Гиллеспи), поэтому валентные углы составляют »90°. Так, в молекулах H 2 S, H 2 Se, H 2 Te они соответственно равны 92; 91; 89,5°.

Таблица 8 – Молекулы водородных соединений элементов 2-го периода

В 1930 г. Слейтером и Л. Полингом была развита теория образования ковалентной связи за счет перекрывания электронных орбиталей – метод валентных связей. В основе этого метода лежит метод гибридизации, который описывает образование молекул веществ за счет «смешивания» гибридных орбиталей («смешиваются» не электроны, а орбитали).

ОПРЕДЕЛЕНИЕ

Гибридизация – смешение орбиталей и выравнивание их по форме и энергии. Так, при смешении s- и p- орбиталей получаем тип гибридизации sp, s- и 2-х p-орбиталей – sp 2 , s- и 3-х p-орбиталей – sp 3 . Существуют и другие типы гибридизации, например, sp 3 d, sp 3 d 2 и более сложные.

Определение типа гибридизации молекул с ковалентной связью

Определить тип гибридизации можно только для молекул с ковалентной связью типа АВ n , где n больше или равно двум, А – центральный атом, В – лиганд. В гибридизацию вступают только валентные орбитали центрального атома.

Определим тип гибридизации на примере молекулы BeH 2 .

Первоначально записываем электронные конфигурации центрального атома и лиганда, рисуем электронно-графические формулы.

Атом бериллия (центральный атом) имеет вакантные 2p-орбитали, поэтому, чтобы принять по одному электрону от каждого атома водорода (лиганд) для образования молекулы BeH 2 ему необходимо перейти в возбужденное состояние:

Образование молекулы BeH 2 происходит за счет перекрывания валентных орбиталей атома Be

* красным цветом обозначены электроны водорода, черным – бериллия.

Тип гибридизации определяют по тому, какие орбитали перекрылись, т.о., молекула BeH 2 находитс в sp – гибридизации.

Помимо молекул состава AB n , методом валентных связей можно определить тип гибридизации молекул с кратными связями. Рассмотрим на примере молекулы этилена C 2 H 4 . В молекуле этилена кратная двойная связь, которая образована и –связями. Чтобы определить гибридизацию, записываем электронные конфигурации и рисуем электронно-графические формулы атомов, входящих в состав молекулы:

6 C 2s 2 2s 2 2p 2

У атома углерода имеется еще одна вакантная p-орбиталь, следовательно, чтобы принять 4 атома водорода ему необходимо перейти в возбужденное состояние:

Одна p-орбиталь необходима для образования -связи (выделена красным цветом), поскольку -связь образуется за счет перекрывания «чистых» (негибридных) p — орбиталей. Остальные валентные орбитали идут в гибридизацию. Таким образом этилен находится в гибридизации sp 2 .

Определение геометрической структуры молекул

Геометрическую структуру молекул, а также катионов и анионов состава АВ n можно с помощью метода Гиллеспи. В основе этого метода – валентные пары электронов. На геометрическую структуру оказывают влияние не только электроны, участвующие в образовании химической связи, но и неподеленные электронные пары. Каждую неподеленную пару электронов в методе Гиллеспи обозначают Е, центральный атом – А, лиганд – В.

Если неподеленных электронных пар нет, то состав молекул может быть АВ 2 (линейная структура молекулы), АВ 3 (структура плоского треугольника), АВ4 (тетраэдрическая структура), АВ 5 (структура тригональной бипирамиды) и АВ 6 (октаэдрическая структура). От базисных структур могут быть получены производные, если вместо лиганда появляется неподеленная электронная пара. Например: АВ 3 Е (пирамидальная структура), АВ 2 Е 2 (угловая структура молекулы).

Чтобы определить геометрическую структуру (строение) молекулы необходимо определить состав частицы, для чего вычисляют количество неподеленных лектронных пар (НЕП):

НЕП = (общее число валентных электронов – число электронов, пошедших на образование связи с лигандами) / 2

На связь с H, Cl, Br, I, F уходит по 1-му электрону от А, на связь с O – по 2 электрона, а на связь с N – по 3 электрона от центрального атома.

Рассмотрим на примере молекулы BCl 3 . Центральный атом – B.

5 B 1s 2 2s 2 2p 1

НЕП = (3-3)/2 = 0, следовательно неподеленных электронных пар нет и молекула имеет структуру АВ 3 – плоский треугольник.

Подробно геометрическое строение молекул разного состава представлено в табл. 1.

Таблица 1. Пространственное строение молекул

Формула молекулы

Тип гибридизации

Тип молекулы

Геометрия молекулы

линейная

треугольная

тетраэдр

тригональная пирамида

тригональная бипирамида

дисфеноид

Т-образная

линейная

квадратная пирамида

Примеры решения задач

ПРИМЕР 1

Задание Определите с помощью метода валентных связей тип гибридизации молекулы метана (CH 4) и его геометрическую структуру по методу Гиллеспи
Решение 6 С 2s 2 2s 2 2p 2

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКОЙ ОБЛАСТИ

«КУПИНСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»

МЕТОДИЧЕСКОЕ ПОСОБИЕ

« »

для самостоятельной работы студентов

по дисциплине Химия

Раздел: Органическая химия

Тема: Предмет органической химии.

Теория строения органических соединений

Специальность: 34.02.01 «Сестринское дело» 1 курс

Купино

2015 учебный год

Рассмотрена на заседании

предметно - цикловой методической комиссии по

общеобразовательным дисциплинам, общему гуманитарному и

социально – экономическому, математическому

и естественнонаучному циклу

Протокол от 2015 г.

Председатель ______________ /__________________/

Веде Ирина Викторовна

Пояснительная записка к методическому пособию

Методическое пособие предназначено для углубленного изучения темы « Типы гибридизации атома углерода ».

Практика показывает, что многие обучающиеся затрудняются при определении типов гибридизации атомов углерода и видов химической связи при изучении органических соединений.

Цель пособия – помочь обучающимся научиться определять типы гибридизации атомов углерода и виды химической связи в органических соединениях. Данное пособие рекомендовано для студентов 1 курса специальности 34.02.01 Сестринское дело. Пособие содержит теоретический материал по теме, таблицы для систематизации знаний, упражнения для самостоятельной работы и развернутые ответы по каждому из заданий.

Пособие направлено на формирование навыков самостоятельной работы с учебным материалом, осуществления поиска и использования информации, формирование и развитие творческого потенциала, повышение интереса к дисциплине.

Я всегда готов учиться,

но мне не всегда нравится,

когда меня учат

У. Черчилль

Типы гибридизации атома углерода

Электронное строение атома углерода в основном состоянии 1s 2 2s 2 2р 2 , на р-орбиталях 2-го уровня находятся два неспаренных элекетрона. Это позволяет атому углерода образовать по обменному механизму только две ковалентные связи. Однако во всех органических соединениях углерод образует четыре ковалентные связи, что становится возможным в результате гибридизации атомных орбиталей.

Гибридизация - это взаимодействие атомных орбиталей с близкими значениями энергии, сопровождающееся образованием новых "гибридных" орбиталей.

Гибридизация - процесс, требующий затрат энергии, но эти затраты с избытком компенсируются за счет энергии, выделяющейся при образовании большего числа ковалентных связей. образующиеся "гибридные" орбитали имеют форму ассимметричной гантели и резко отличаются от исходных орбиталей атома углерода.

Для атома углерода возможно три типа гибридизации: 3 -гибридизация - взаимодействующие орбитали показаны синими стрелками:

2 -гибридизация :

sр-гибридизация :

Гибридные орбитали атома углерода способны участвовать в образовании только -связей, незатронутые гибридизацией р-орбитали образуют только -связи. Именно этой особенностью определяется пространственное строение молекул органических веществ.

Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

Форма и ориентация
р-электронных орбиталей

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Четыре sp 3 -гибридные орбитали
атома углерода

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма( )-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Схема перекрывания электронных облаков
в молекуле этана

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Орбитали (три sp 2 и одна р)
атома углерода в sp 2 -гибридизации

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи( )-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Атомные орбитали (две sp и две р)
углерода в состоянии sp-гибридизации

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Ковалентные связи углерода

Число групп,
связанных
с углеродом

Тип
гибридизации

Типы
участвующих
химических связей

Примеры формул соединений

sp 3

Четыре - связи

sp 2

Три - связи и
одна - связь

sp

Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома Си чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

Ответы на упражнения

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами. Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:


2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой. Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием. Ввозбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:


Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s, 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р-орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x, y и z, их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s-орбиталь – форма сферы, р – симметричная восьмерка, sp-гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E(s) < E(sр) < E(р). Таким образом, sp-орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s- и p-орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р-орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.


10.

О гибридах нам говорят много. О них повествуют и фильмы, и книги, а также их рассматривает наука. В первых двух источниках гибриды являются очень опасными существами. Они могут принести уж очень много зла. Но далеко не всегда гибридизация - это плохое явление. Достаточно часто оно бывает хорошим.

Пример гибридизации - это каждый человек. Все мы являемся гибридами двух людей - отца и матери. Так, слияние яйцеклетки и сперматозоида также является своего рода гибридизацией. Именно данный механизм позволяет двигать эволюцию. При этом бывает и гибридизация с отрицательным знаком. Давайте рассмотрим данное явление в целом.

Общее представление о гибридизации

Впрочем, не только биология включает данное понятие. И пусть во вступлении был рассмотрен пример с гибридами как полноценными особями непонятного биологического вида. При этом данное понятие может использоваться и в других науках. И значение данного термина будет несколько отличаться. Но при этом кое-что общее все же есть. Это слово "объединение", которое объединяет все возможные значения данного термина.

Где существует данное понятие?

Термин "гибридизация" используется в ряде наук. А поскольку большая часть существующих ныне дисциплин пересекается, то можно смело говорить об использовании каждого значения данного термина в любой науке, так или иначе связанной с естественными исследовательскими отраслями. При этом наиболее активно данный термин используется в:

  1. Биологии. Отсюда пошло понятие гибрида. Хотя, как всегда, при перемещении из науки в повседневную жизнь произошло некоторое искажение фактов. Мы под гибридом понимаем особь, получившуюся в процессе скрещивания двух других видов. Хотя так бывает не всегда.
  2. Химии. Данное понятие означает смешивание нескольких орбиталей - своеобразных путей движения электронов.
  3. Биохимии. Здесь ключевым понятием является гибридизация ДНК.

Как видим, третий пункт находится на стыке двух наук. И это абсолютно нормальная практика. Один и тот же термин может образовывать на стыке двух наук абсолютно другое значение. Давайте более детально рассмотрим понятие гибридизации в этих науках.

Что такое гибрид?

Гибрид - это существо, которое получилось в процессе гибридизации. Данное понятие относится к биологии. Гибриды могут получаться как случайно, так и специально. В первом случае это могут получиться животные, которые создаются в процессе спаривания двух разновидовых существ.

Например, рассказывают о том, что появляются у кошек и собак дети, которые не являются ни одними из них. Иногда гибриды создаются специально. Например, когда к абрикосу прикрепляют вишню, мы имеем дело как раз с специальной гибридизацией.

Гибридизация в биологии

Биология - интересная наука. И понятие гибридизации в ней не менее увлекательное. Под данным термином подразумевается объединение генетического материала разных клеток в одной. Это могут быть как представители одного вида, так и нескольких. Соответственно, происходит деление на такие разновидности гибридизации.

  • Внутривидовая гибридизация. Это когда две особи одного вида создают потомка. Примером внутривидовой гибридизации можно считать человека. Он получился в процессе слияния половых клеток представителей одного биологического вида.
  • Межвидовая гибридизация. Это когда скрещиваются похожие, но принадлежащие к разным видам, животные. Например, гибрид коня и зебры.
  • Отдаленная гибридизация. Это когда скрещиваются представители хоть и одного вида, но при этом не объединенные семейными связями.

Каждая из этих разновидностей помогает не только эволюции. Ученые также активно стараются скрещивать разные виды живых существ. Лучше всего получается с растениями. Причин этому несколько:

  • Разное количество хромосом. У каждого вида есть не только специфическое количество хромосом, но и их набор. Все это мешает воспроизводить потомство.
  • Размножаться могут только растения-гибриды. И то не всегда.
  • Полиплоидными могут быть только растения. Чтобы растение размножалось, оно должно стать полиплоидным. В случае с животными это верная смерть.
  • Возможность вегетативной гибридизации. Это очень простой и удобный способ создания гибридов нескольких растений.

Это причины, по которым скрещивать два растения значительно проще и эффективнее. В случае с животными, возможно, в будущем получится добиться возможности размножения. Но на данный момент официальным в биологии считается мнение, что животные-гибриды утрачивают способность размножаться, так как данные особи являются генетически нестабильными. Следовательно, неизвестно, к чему может привести их размножение.

Виды гибридизации в биологии

Биология - наука достаточно широкая по своей специализации. Бывает два вида гибридизации, которые она предусматривает:

  1. Генетическая. Это когда из двух клеток делается одна с уникальным набором хромосом.
  2. Биохимическая. Примером данного вида является гибридизация ДНК. Это когда комплементарные нуклеиновые кислоты объединяются в одну ДНК.

Можно делить на большее количество разновидностей. Но это мы сделали в предыдущем подразделе. Так, отдаленная и внутривидовая гибридизация - это составные части первого типа. А там классификация еще больше расширяется.

Понятие вегетативной гибридизации

Вегетативная гибридизация - это понятие в биологии, которое означает такую разновидность скрещивания двух растений, при котором часть одного вида приживается на другом. То есть, гибридизация происходит за счет совмещения двух разных частей организма. Да, так можно растение охарактеризовать. Ведь у него также есть свои органы, объединенные в целую систему. Следовательно, если называть растение организмом, ничего зазорного в этом нет.

Вегетативная гибридизация имеет ряд преимуществ. Это:

  • Удобство.
  • Простота.
  • Эффективность.
  • Практичность.

Данные плюсы делают такую разновидность скрещивания очень популярной у садоводов. Также есть такое понятие, как соматическая гибридизация. Это когда скрещивают не половые клетки, а соматические, вернее, их протопласты. Данный способ скрещивания производится тогда, когда невозможно создать гибрид стандартным половым путем между несколькими растениями.

Гибридизация в химии

Но теперь мы немного отступим от биологии и поговорим о другой науке. В химии есть свое понятие, называется оно "гибридизация атомных орбиталей". Это очень сложный термин, но если разбираться немного в химии, то ничего сложного в нем нет. Сперва нужно объяснить, что же такое орбиталь.

Это своеобразный путь, по которому движется электрон. Нас этому учили еще в школе. И если происходит такое, что данные орбитали разного типа смешиваются, получается гибрид. Существует три вида явления, называемого "гибридизация орбиталей". Это такие разновидности:

  • sp-гибридизация - одна s и другая p орбиталь;
  • sp 2 -гибридизация - одна s и две p орбитали;
  • sp 3 -гибридизация - одна s и три p орбитали соединяются.

Данная тема достаточно сложная для изучения, и ее нужно рассматривать неразрывно от остальной части теории. Причем понятие гибридизации орбиталей касается больше конца данной темы, а не начала. Ведь нужно изучить само понятие орбиталей, какими они бывают и так далее.

Выводы

Итак, мы разобрались в значениях понятия "гибридизация". Это, оказывается, достаточно интересно. Для многих было открытием то, что в химии также есть данное понятие. Но если бы этого такие люди не знали, то чему бы они могли научиться? А так, есть развитие. Важно не прекращать тренировать эрудицию, так как это обязательно будет характеризовать вас с хорошей стороны.