Информационно развлекательный портал
Поиск по сайту

Точные и приближенные значения величин. А– приближенное значение величины А

Приближенные вычисления с помощью дифференциала

На данном уроке мы рассмотрим широко распространенную задачу о приближенном вычислении значения функции с помощью дифференциала . Здесь и далее речь пойдёт о дифференциалах первого порядка, для краткости я часто буду говорить просто «дифференциал». Задача о приближенных вычислениях с помощью дифференциала обладает жёстким алгоритмом решения, и, следовательно, особых трудностей возникнуть не должно. Единственное, есть небольшие подводные камни, которые тоже будут подчищены. Так что смело ныряйте головой вниз.

Кроме того, на странице присутствуют формулы нахождения абсолютной и относительной погрешность вычислений. Материал очень полезный, поскольку погрешности приходится рассчитывать и в других задачах. Физики, где ваши аплодисменты? =)

Для успешного освоения примеров необходимо уметь находить производные функций хотя бы на среднем уровне, поэтому если с дифференцированием совсем нелады, пожалуйста, начните с урока Как найти производную? Также рекомендую прочитать статью Простейшие задачи с производной , а именно параграфы о нахождении производной в точке и нахождении дифференциала в точке . Из технических средств потребуется микрокалькулятор с различными математическими функциями. Можно использовать Эксель, но в данном случае он менее удобен.

Практикум состоит из двух частей:

– Приближенные вычисления с помощью дифференциала функции одной переменной.

– Приближенные вычисления с помощью полного дифференциала функции двух переменных.

Кому что нужно. На самом деле можно было разделить богатство на две кучи, по той причине, что второй пункт относится к приложениям функций нескольких переменных . Но что поделать, вот люблю я длинные статьи.

Приближенные вычисления
с помощью дифференциала функции одной переменной

Рассматриваемое задание и его геометрический смысл уже освещёны на уроке Что такое производная? , и сейчас мы ограничимся формальным рассмотрением примеров, чего вполне достаточно, чтобы научиться их решать.

В первом параграфе рулит функция одной переменной. Как все знают, она обозначается через или через . Для данной задачи намного удобнее использовать второе обозначение. Сразу перейдем к популярному примеру, который часто встречается на практике:

Пример 1

Решение: Пожалуйста, перепишите в тетрадь рабочую формулу для приближенного вычисления с помощью дифференциала :

Начинаем разбираться, здесь всё просто!

На первом этапе необходимо составить функцию . По условию предложено вычислить кубический корень из числа: , поэтому соответствующая функция имеет вид: . Нам нужно с помощью формулы найти приближенное значение .

Смотрим на левую часть формулы , и в голову приходит мысль, что число 67 необходимо представить в виде . Как проще всего это сделать? Рекомендую следующий алгоритм: вычислим данное значение на калькуляторе:
– получилось 4 с хвостиком, это важный ориентир для решения.

В качестве подбираем «хорошее» значение, чтобы корень извлекался нацело . Естественно, это значение должно быть как можно ближе к 67. В данном случае: . Действительно: .

Примечание: Когда с подбором всё равно возникает затруднение, просто посмотрите на скалькулированное значение (в данном случае ), возьмите ближайшую целую часть (в данном случае 4) и возведите её нужную в степень (в данном случае ). В результате и будет выполнен нужный подбор: .

Если , то приращение аргумента: .

Итак, число 67 представлено в виде суммы

Сначала вычислим значение функции в точке . Собственно, это уже сделано ранее:

Дифференциал в точке находится по формуле:
– тоже можете переписать к себе в тетрадь.

Из формулы следует, что нужно взять первую производную:

И найти её значение в точке :

Таким образом:

Всё готово! Согласно формуле :

Найденное приближенное значение достаточно близко к значению , вычисленному с помощью микрокалькулятора.

Ответ:

Пример 2

Вычислить приближенно , заменяя приращения функции ее дифференциалом.

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока. Начинающим сначала рекомендую вычислить точное значение на микрокалькуляторе, чтобы выяснить, какое число принять за , а какое – за . Следует отметить, что в данном примере будет отрицательным.

У некоторых, возможно, возник вопрос, зачем нужна эта задача, если можно всё спокойно и более точно подсчитать на калькуляторе? Согласен, задача глупая и наивная. Но попытаюсь немного её оправдать. Во-первых, задание иллюстрирует смысл дифференциала функции. Во-вторых, в древние времена, калькулятор был чем-то вроде личного вертолета в наше время. Сам видел, как из местного политехнического института году где-то в 1985-86 выбросили компьютер размером с комнату (со всего города сбежались радиолюбители с отвертками, и через пару часов от агрегата остался только корпус). Антиквариат водился и у нас на физмате, правда, размером поменьше – где-то с парту. Вот так вот и мучились наши предки с методами приближенных вычислений. Конная повозка – тоже транспорт.

Так или иначе, задача осталась в стандартном курсе высшей математики, и решать её придётся. Это основной ответ на ваш вопрос =)

Пример 3

в точке . Вычислить более точное значение функции в точке с помощью микрокалькулятора, оценить абсолютную и относительную погрешность вычислений.

Фактически то же самое задание, его запросто можно переформулировать так: «Вычислить приближенное значение с помощью дифференциала»

Решение: Используем знакомую формулу:
В данном случае уже дана готовая функция: . Ещё раз обращаю внимание, что для обозначения функции вместо «игрека» удобнее использовать .

Значение необходимо представить в виде . Ну, тут легче, мы видим, что число 1,97 очень близко к «двойке», поэтому напрашивается . И, следовательно: .

Используя формулу , вычислим дифференциал в этой же точке.

Находим первую производную:

И её значение в точке :

Таким образом, дифференциал в точке:

В результате, по формуле :

Вторая часть задания состоит в том, чтобы найти абсолютную и относительную погрешность вычислений.

Абсолютная и относительная погрешность вычислений

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.


После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность:

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

Вычислить приближенно с помощью дифференциала значение функции в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах . Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.

Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом:

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом: (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления
с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели:
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть – надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: . Общая закономерность такова – чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение : Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий – это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2: Решение: Используем формулу:
В данном случае: , ,

Таким образом:
Ответ:

Пример 4: Решение: Используем формулу:
В данном случае: , ,

ПРИБЛИЖЕННЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ

  1. Приближенное значение величины. Абсолютная и относительная погрешности

Решение практических задач, как правило, связано с числовыми значениями величин. Эти значения получаются либо в результате измерения, либо в результате вычислений. В большинстве случаев значения величин, которыми приходится оперировать, являются приближенными.

Пусть X - точное значение некоторой величины, а х - наилучшее из известных ее приближенных значений. В этом случае погрешность (или ошибка) приближения х определяется разностью Х-х. Обычно знак этой ошибки не имеет решающего значения, поэтому рассматривают ее абсолютную величину:

Число в этом случае называется предельной абсолютной погрешностью, или границей абсолютной погрешности приближения х.

Таким образом, предельная абсолютная погрешность приближенного числа х - это всякое число, не меньшее абсолютной погрешности е х этого числа.

Пример: Возьмем число. Если же вызвать на индикатор 8-разрядного МК, получим приближение этого числа: Попытаемся выразить абсолютную погрешность значения. Получили бесконечную дробь, не пригодную для практических расчетов. Очевидно, однако, что следовательно, число 0,00000006 = 0,6 * 10 -7 можно считать предельной абсолютной погрешностью приближения, используемого МК вместо числа

Неравенство (2) позволяет установить приближения к точному значению X по недостатку и избытку:

Во многих случаях значения границы абсолютной ошибки так же как и наилучшие значения приближения х , получаются на практике в результате измерений. Пусть, например, в результате повторных измерений одной и той же величины х получены значения: 5,2; 5,3; 5,4; 5,3. В этом случае естественно принять за наилучшее приближение измеряемой величины среднее значение х = 5,3. Очевидно также, что граничными значениями величины х в данном случае будут НГ Х = 5,2, ВГ Х = 5,4, а граница абсолютной погрешности х может быть определена как половина длины интервала, образуемого граничными значениями НГ Х и ВГ Х ,

т.е.

По абсолютной погрешности нельзя в полной мере судить о точности измерений или вычислений. Качество приближения характеризуется величиной относительной погрешности, которая определяется как отношение ошибки е х к модулю значения X (когда оно неизвестно, то к модулю приближения х ).

Предельной относительной погрешностью (или границей относительной погрешности) приближенного числа называется отношение предельной абсолютной погрешности к абсолютному значению приближения х :

Относительную погрешность выражают обычно в процентах.

Пример Определим предельные погрешности числа х=3,14 как приближенного значения π. Так как π=3,1415926…., то |π-3,14|

  1. Верные и значащие цифры. Запись приближенных значений

Цифра числа называется верной (в широком смысле), если ее абсолютная погрешность не превосходит единицы разряда, в котором стоит эта цифра.

Пример. Х=6,328 Х=0,0007 X

Пример: А). Пусть 0 = 2,91385, В числе а верны в широком смысле цифры 2, 9, 1.

Б) Возьмем в качестве приближения к числу = 3,141592... число = 3,142. Тогда (рис.) откуда следует, что в приближенном значении = 3,142 все цифры являются верными.

В) Вычислим на 8-разрядном МК частное точных чисел 3,2 и 2,3, получим ответ: 1,3913043. Ответ содержит ошибку, поскольку

Рис. Приближение числа π

разрядная сетка МК не вместила всех цифр результата и все разряды начиная с восьмого были опущены. (В том, что ответ неточен, легко убедиться, проверив деление умножением: 1,3913043 2,3 = 3,9999998.) Не зная истинного значения допущенной ошибки, вычислитель в подобной ситуации всегда может быть уверен, что ее величина не превышает единицы самого младшего из изображенных на индикаторе разряда результата. Следовательно, в полученном результате все цифры верны.

Первая отброшенная (неверная) цифра часто называется сомнительной.

Говорят, что приближенное данное записано правильно, если в его записи все цифры верные. Если число записано правильно, то по одной только его записи в виде десятичной дроби можно судить о точности этого числа. Пусть, например, записано приближенное число а = 16,784, в котором все цифры верны. Из того, что верна последняя цифра 4, которая стоит в разряде тысячных, следует, что абсолютная погрешность значения а не превышает 0,001. Это значит, что можно принять т.е. а = 16,784±0,001.

Очевидно, что правильная запись приближенных данных не только допускает, но и обязывает выписывать нули в последних разрядах, если эти нули являются выражением верных цифр. Например, в записи = 109,070 нуль в конце означает, что цифра в разряде тысячных верна и она равна нулю. Предельной абсолютной погрешностью значения , как следует из записи, можно считать Для сравнения можно заметить, что значение с = 109,07 является менее точным, так как из его записи приходится принять, что

Значащими цифрами в записи числа называются все цифры в его десятичном изображении, отличные от нуля, и нули, если они расположены между значащими цифрами или стоят в конце для выражения верных знаков.

Пример а) 0,2409 - четыре значащие цифры; б) 24,09 - четыре значащие цифры; в) 100,700 - шесть значащих цифр.

Выдача числовых значений в ЭВМ, как правило, устроена таким образом, что нули в конце записи числа, даже если они верные, не сообщаются. Это означает, что если, например, ЭВМ показывает результат 247,064 и в то же время известно, что в этом результате верными должны быть восемь значащих цифр, то полученный ответ следует дополнить нулями: 247,06400.

В процессе вычислений часто происходит округление чисел, т.е. замена чисел их значениями с меньшим количеством значащих цифр. При округлении возникает погрешность, называемая погрешностью округления. Пусть х - данное число, а х 1 - результат округления. Погрешность округления определяется как модуль разности прежнего и нового значений числа:

В отдельных случаях вместо ∆ окр приходится использовать его верхнюю оценку.

Пример Выполним на 8-разрядном МК действие 1/6. На индикаторе высветится число 0,1666666. Произошло автоматическое округление бесконечной десятичной дроби 0,1(6) до числа разрядов, вмещающихся в регистре МК. При этом можно принять

Цифра числа называется верной в строгом смысле, если абсолютная погрешность этого числа не превосходит половины единицы разряда, в котором стоит эта цифра.

Правила записи приближенных чисел.

  1. Приближенные числа записываются в форме х ±  х. Запись X = х ±  x означает, что неизвестная величина X удовлетворяет следующим неравенствам: x-  x  x

При этом погрешность  х рекомендуется подбирать так, чтобы

а) в записи  х было не более 1-2 значащих цифр;

б) младшие разряды в записи чисел х и  х соответствовали друг другу.

Примеры: 23,4±0,2 ; 2,730±0,017 ; -6,97  0,10.

  1. Приближенное число может быть записано без явного указания его предельной абсолютной погрешности. В этом случае в его записи (мантиссе) должны присутствовать только верные цифры (в широком смысле, если не сказано обратное). Тогда по самой записи числа можно судить о его точности.

Примеры. Если в числе А=5,83 все цифры верны в строгом смысле, то А=0,005. Запись В=3,2 подразумевает, что В=0,1. А по записи С=3,200 мы можем заключить, что С=0,001. Таким образом, записи 3,2 и 3,200 в теории приближенных вычислений означают не одно и то же.

Цифры в записи приближенного числа, о которых нам неизвестно, верны они или нет, называются сомнительными. Сомнительные цифры (одну-две) оставляют в записи чисел промежуточных результатов для сохранения точности вычислений. В окончательном результате сомнительные цифры отбрасываются.

Округление чисел.

  1. Правило округления. Если в старшем из отбрасываемых разрядов стоит цифра меньше пяти, то содержимое сохраняемых разрядов числа не изменяется. В противном случае в младший сохраняемый разряд добавляется единица с тем же знаком, что и у самого числа.
  2. При округлении числа, записанного в форме х± х, его предельная абсолютная погрешность увеличивается с учетом погрешности округления.

Пример: Округлим до сотых число 4,5371±0,0482. Неправильно было бы записать 4,54±0,05 , так как погрешность округленного числа складывается из погрешности исходного числа и погрешности округления. В данном случае она равна 0,0482 + 0,0029 = 0,0511 . Округлять погрешности всегда следует с избытком, поэтому окончательный ответ: 4,54±0,06.

Пример Пусть в приближенном значении а = 16,395 все цифры верны в широком смысле. Округлим а до сотых: a 1 = 16,40. Погрешность округления Для нахождения полной погрешности, нужно сложить c погрешностью исходного значения а 1 которая в данном случае может быть найдена из условия, что все цифры в записи а верны: = 0,001. Таким образом, . Отсюда следует, что в значении a 1 = 16,40 цифра 0 не верна в строгом смысле.

  1. Вычисление погрешностей арифметических действий

1. Сложение и вычитание . Предельной абсолютной погрешностью алгебраической суммы является сумма соответствующих погрешностей слагаемых:

Ф.1  (X+Y) =  Х +  Y ,  (X-Y) =  Х +  Y .

Пример. Даны приближенные числа Х = 34,38 и Y = 15,23 , все цифры верны в строгом смысле. Найти  (X-Y) и  (X-Y). По формуле Ф.1 получаем:

 (X-Y) = 0,005 + 0,005 = 0,01.

Относительную погрешность получим по формуле связи:

2. Умножение и деление. Если  Х  Y

Ф.2  (X · Y) =  (X/Y) =  X +  Y.

Пример . Найти  (X·Y) и  (X·Y) для чисел из предыдущего примера. Сначала с помощью формулы Ф.2 найдем  (X·Y):

 (X·Y)=  X +  Y=0,00015+0,00033=0,00048

Теперь  (X·Y) найдем с помощью формулы связи:

 (X·Y) = |X·Y|·  (X·Y) = |34,38 -15,23|·0,00048  0,26 .

3. Возведение в степень и извлечение корня . Если  Х

Ф.З

4. Функция одной переменной.

Пусть даны аналитическая функция f(x) и приближенное число с ±  с. Тогда, обозначая через малое приращение аргумента, можно написать

Если f "(с)  0, то приращение функции f(с+ ) - f(c) можно оценить ее дифференциалом:

f(c+  ) - f(c)  f "(c) ·  .

Если погрешность  с достаточно мала, получаем окончательно следующую формулу:

Ф.4  f(c) = |f "(с)|·  с.

Пример. Даны f(x) = arcsin x , с = 0,5 , с = 0,05 . Вычислить  f(с).

Применим формулу Ф.4:

И т. д.

5. Функция нескольких переменных.

Для функции нескольких переменных f(x1, ... , хn) при xk= ck ±  ck справедлива формула, аналогичная Ф.4:

Ф.5  f(c1, ... ,сn)  l df(c1, ... ,сn) | = |f "x1 (с1)|·  с1+... + |f "xn (сn)|·  сn.

Пример Пусть х = 1,5, причем т.е. все цифры в числе х верны в строгом смысле. Вычислим значение tg x . С помощью МК получаем: tgl,5= 14,10141994. Для определения верных цифр в результате оценим его абсолютную погрешность: отсюда следует, что в полученном значении tgl,5 ни одну цифру нельзя считать верной.

  1. Методы оценки погрешности приближенных вычислений

Существуют строгие и нестрогие методы оценки точности результатов вычислений.

1. Строгий метод итоговой оценки . Если приближенные вычисления выполняются по сравнительно простой формуле, то с помощью формул Ф.1-Ф.5 и формул связи погрешностей можно вывести формулу итоговой погрешности вычислений. Вывод формулы и оценка погрешности вычислений с ее помощью составляют суть данного метода.

Пример Значения a = 23,1 и b = 5,24 даны цифрами, верными в строгом смысле. Вычислить значение выражения

С помощью МК получаем В = 0,2921247. Используя формулы относительных погрешностей частного и произведения, запишем:

Т.е.

Пользуясь МК, получим 5, что дает. Это означает, что в результате две цифры после запятой верны в строгом смысле: В=0,29±0,001.

2. Метод строгого пооперационного учета погрешностей . Иногда попытка применения метода итоговой оценки приводит к слишком громоздкой формуле. В этом случае более целесообразным может оказаться применение данного метода. Он заключается в том, что оценивается точность каждой операции вычислений отдельно с помощью тех же формул Ф.1-Ф.5 и формул связи.

3. Метод подсчета верных цифр . Данный метод относится к нестрогим. Оценка точности вычислений, которую он дает, в принципе не гарантирована (в отличие от строгих методов), но на практике является довольно надежной. Суть метода заключается в том, что после каждой операции вычислений в полученном числе определяется количество верных цифр с помощью нижеследующие правил.

П.1 . При сложении и вычитании приближенных чисел в результате верными следует считать, те цифры, десятичным разрядам которых соответствуют верные цифры во всех слагаемых. Цифры всех других разрядов кроме самого старшего из них перед выполнением сложения или вычитания должны быть округлены во всех слагаемых.

П.2. При умножении и делении приближенных чисел в результате верными следует считать столько значащих цифр, сколько их имеет приближенное данное с наименьшим количеством верных значащих цифр. Перед выполнением этих действий среди приближенных данных нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы они имели лишь на одну значащую цифру больше него.

П.З. При возведении в квадрат или в куб, а также при извлечении квадратного или кубического корня в результате следует считать верными столько значащих цифр, сколько имелось верных значащих цифр в исходном числе.

П.4. Количество верных цифр в результате вычисления функции зависит от величины модуля производной и от количества верных цифр в аргументе. Если модуль производной близок к числу 10k (k - целое), то в результате количество верных цифр относительно запятой на k меньше (если k отрицательно, то - больше), чем их было в аргументе. В данной лабораторной работе для определенности примем соглашение считать модуль, производной близким к 10k , если имеет место неравенство:

0,2·10K  2·10k .

П.5. В промежуточных результатах помимо верных цифр следует оставлять одну сомнительную цифру (остальные сомнительные цифры можно округлять) для сохранения точности вычислений. В окончательном результате оставляют только верные цифры.

Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений - метод границ.

Пусть f(x, у) - функция, непрерывная и монотонная в некоторой области допустимых значений аргументов х и у. Нужно получить ее значение f(a, b), где а и b - приближенные значения аргументов, причем достоверно известно, что

НГ a a a ; НГ b ВГ b .

Здесь НГ, ВГ - обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b), при известных границах значений а и b.

Допустим, что функция f(x, у) возрастает по каждому из аргументов x и y . Тогда

f (НГ а , НГ b f (a , b )f (ВГ a ВГ b ).

Пусть f(x, у) возрастает по аргументу х и убывает по аргументу у . Тогда будет строго гарантировано неравенство

В самых разнообразных теоретических и прикладных исследованиях широко используются методы математического моделирования, которые сводят решение задач данной области исследования к решению адекватных (или приближенно адекватных) им математических задач. Необходимо довести решение этих задач до получения числового результата (вычисления различного рода величин, решения различных типов уравнений и т.п.). Целью вычислительной математики является разработка алгоритмов численного решения обширного круга математических задач. Методы должны быть разработаны так, чтобы их можно было эффективно реализовать с помощью современной вычислительной техники. Как правило, рассматриваемые задачи не допускают точного решения, поэтому речь идет о разработке алгоритмов, дающих приближенное решение. Для возможности замены неизвестного точного решения задачи приближенным необходимо, чтобы последнее было достаточно близко к точному. В связи с этим возникает необходимость оценки близости приближенного решения к точному и разработки приближенных методов построения приближенных решений, сколько угодно близких к точным.

Схематически вычислительный процесс заключается в том, чтобы для данной величины x (числовой, векторный и т.д.) вычислить значение некоторой функции A(x) . Разность между точным и приближенным значениями величины называют погрешностью . Точное вычисление значения A(x) обычно невозможно, и вынуждает заменить функцию (операцию) A ее приближенным представлением Ã , которое можно вычислить: вычисление величины A(x) , заменяется вычислением- Ã(x) A(x) - Ã(x) называют погрешностью метода . Способ оценки этой погрешности должен быть разработан вместе с разработкой метода вычисления величины Ã(x) . Из возможных методов построения приближения следует использовать тот, который при имеющихся средствах и возможностях дает наименьшую погрешность.

Значение величины x , то есть исходных данных, в реальных задачах получается или непосредственно из измерений, или в результате предыдущего этапа вычислений. В этих случаях определяется лишь приближенное значение x o величины x . Поэтому вместо величины Ã(x) может быть вычислено лишь приближенное ее значение Ã(x o) . Возникающую при этом погрешность A(x) - Ã(x o) называют неустранимой . В результате неизбежных в ходе вычислений округлений, вместо величины Ã(x o) вычисляется ее «округленное» значение , что приводит к появлению погрешности округления Ã(x o) - . Полная погрешность вычислиниия оказывается равной A(x) - .

Представим полную погрешность в виде

A(x) - = [A(x) - ] + [ - Ã(x o) ] +

+ [Ã(x o) - ] (1)

Последнее равенство показывает, что полная погрешность вычисления равна сумме погрешности метода, неустранимой погрешности и погрешности округления. Первые две составляющие погрешности можно оценить до начала вычислений. Погрешность округления оценивается лишь в ходе вычислений.

Рассмотрим следующие задачи:

а) характеристика точности приближенных чисел

б) оценка точности результата при известной точности исходных данных (оценка неустранимой погрешности)

в) определение необходимой точности исходных данных для обеспечения заданной точности результата

г) согласование точности исходных данных и вычислений с возможностями имеющихся вычислительных средств.

4 Погрешности измерений

4.1 Истинные и действительные значения физических величин. Погрешность измерения. Причины возникновения погрешностей измерений

При анализе измерений следует четко разграничивать два понятия: истинные значения физических величин и их эмпирические проявления - результаты измерений.

Истинные значения физических величин - это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении. Они не зависят от средств измерений и являются той абсолютной истиной, к которой стремятся при измерениях.

Напротив, результаты измерений являются продуктами познания. Представляя собой приближенные оценки значений величин, найденные в результате измерений, они зависят от метода измерений, от средств измерений и других факторов.

Погрешностью измерения называется разница между результатом измерения х и истинным значением Q измеряемой величины:

Δ= x – Q (4.1)

Но поскольку истинное значение Q измеряемой величины неизвестно, то для определения погрешности измерения в формулу (4.1) вместо истинного значения подставляют так называемое действительное значение.

Под действительным значением измеряемой величины понимается ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.

Причинами возникновения погрешностей являются: несовершенство методов измерений, средств измерений и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений. Последние проявляются двояко. С одной стороны, все физические величины, играющие какую-либо роль при проведении измерений, в той или иной степени зависят друг от друга. Поэтому с изменением внешних условий изменяются истинные значения измеряемых величин. С другой стороны, условия проведения измерений влияют и на характеристики средств измерений и физиологические свойства органов чувств наблюдателя и через их посредство становятся источником погрешностей измерений.

4.2 Классификация погрешностей измерений в зависимости от характера их изменения

Описанные причины возникновения погрешностей являются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения. Их можно объединить в две основные группы.

К первой группе можно отнести факторы, проявляющиеся нерегулярно и неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, малые флуктуации влияющих величин (температуры, давления окружающей среды и т.п.). Доля, или составляющая, суммарной погрешности измерения, возникающая под действием факторов этой группы, определяет случайную погрешность измерения.

Таким образом, случайная погрешность измерения - составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины.

При создании средств измерений и организации процесса измерения в целом интенсивность проявления факторов, определяющих случайную погрешность измерения, удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например, внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом измерительного эксперимента. Такие погрешности в составе случайной погрешности называются грубыми . К ним тесно примыкают промахи - погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.

Ко второй группе можно отнести факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например, плавные изменения влияющих величин. Составляющая суммарной погрешности изме­рения, возникающая под действием факторов этой группы, определяет система­тическую погрешность измерения.

Таким образом, систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.

В процессе измерения описанные составляющие погрешности проявляются одновременно, и суммарную погрешность можно представить в виде суммы

, (4.2)

где - случайная,a Δ s - систематическая погрешности.

Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей обработкой опытных данных. Поэтому большое значение имеет изучение погрешности как функции номера наблюдения, т.е. времени A (t). Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:

Δ 1 = Δ(t 1), Δ 2 = Δ(t 2),..., Δ n = Δ(t n).

В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времени t i . Можно указать лишь вероятности появления ее значений в том или ином интервале. В серии экспериментов, состоящих из ряда многократных наблюдений, мы получаем одну реализацию этой функции. При повторении серии при тех же значениях величин, характеризующих факторы второй группы, неизбежно получаем новую реализацию, отличающуюся от первой. Реализации отличаются друг от друга из-за влияния факторов первой группы, а факторы второй группы, одинаково проявляющиеся при получении каждой реализации, придают им некоторые общие черты (рисунок 4.1).

Погрешность измерений, соответствующая каждому моменту времени t i , на­зывается сечением случайной функции Δ(t). В каждом сечении можно найти среднее значение погрешности Δ s (t i), относительно которого группируются погрешности в различных реализациях. Если через полученные таким образом точки Δ s (t i) провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени. Нетрудно заметить, что средние значения Δ s (tj) определяются действием факторов второй группы и представляют собой систематическую погрешность измерения в момент времени t i , а отклонения Δ j (t j) от среднего значения в сечении t i , соответствующие j-й реализации, дают значение случайной погрешности. Таким образом, имеет место равенство

(4.3)

Рисунок 4.1

Предположим, что Δ s (t i) = 0, т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом сечении, и что все теоретико-вероятностные особенности случайных погрешностей, являющихся значениями одной реализации во всех сечениях, совпадают между собой. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины – как результаты независимых наблюдений над ней.

В таких условиях случайная погрешность измерений определяется как разность между исправленным результатом измерения Х И (результатом, не содержащем систематическую погрешность) и истинным значением Q измеряемой величины:

Δ = X И –Q 4.4)

причем исправленным будет результат измерений, из которого будут исключены систематические погрешности.

Подобные данные получают обычно при поверке средств измерений путем измерения заранее известных величин. При проведении же измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому неясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.

Ответ на эти вопросы можно получить, используя при обработке результатов наблюдений методы математической статистики, имеющие дело именно со случайными величинами.

4.3 Классификация погрешностей измерений в зависимости от причин их возникновения

В зависимости от причин возникновения различают следующие группы погрешностей: методические, инструментальные, внешние и субъективные.

Во многих методах измерений можно обнаружить методическую погрешность ,являющуюся следствием тех или иных допущений и упрощений, применения эмпирических формул и функциональных зависимостей. В некоторых случаях влияние таких допущений оказывается незначительным, т.е. намного меньше, чем допускаемые погрешности измерений; в других случаях оно превышает эти погрешности.

Примером методических погрешностей являются погрешности метода измерений электрического сопротивления при помощи амперметра и вольтметра (рисунок 4.2). Если сопротивление R x определять по формуле закона Ома R x =U v /I a , где U v - падение напряжения, измеренное вольтметром V; I а - сила тока, измеренная амперметром А, то в обоих случаях будут допущены методические погрешности измерений.

На рисунке 4.2,а сила тока I а, измеренная амперметром, будет больше силы тока в сопротивлении R x на значение силы тока I v в вольтметре, включаемом параллельно сопротивлению. Сопротивление R x , вычисленное с помощью приведенной формулы, окажется меньше действительного. На рисунке 4.2,6 напряжение, измеренное вольтметром V, окажется больше падения напряжения U r в сопротивлении R x на значение U a (падение напряжения на сопротивлении амперметра А). Сопротивление, вычисленное по формуле закона Ома, окажется больше сопротивления R x на значение R a (сопротивление амперметра). Поправки в обоих случаях можно легко вычислить, если знать сопротивление вольтметра и амперметра. Поправки можно не вносить в том случае, если они значительно меньше допускаемой погрешности измерения сопротивления R x , например, если в первом случае сопротивление вольтметра значительно б

ОльшеR x , а во втором случае R a значительно меньше R x .

Рисунок 4.2

Другим примером появления методической погрешности является измерение объема тел, форма которых принимается геометрически правильной, путем измерения размеров в одном или в недостаточном числе мест, например, измерение объема помещения путем измерения длины, ширины и высоты только в трех направлениях. Для точного определения объема следовало бы определить длину и ширину помещения по каждой стене, вверху и внизу, измерить высоту по углам и в середине и, наконец, углы между стенами. Этот пример иллюстрирует возможность появления существенной методической погрешности при не­обоснованном упрощении метода.

Как правило, методическая погрешность является систематической погрешностью.

Инструментальная погрешность - это составляющая погрешности из-за несовершенства средств измерений. Классическим примером такой погрешно­сти является погрешность измерительного прибора, вызванная неточной гра­дуировкой его шкалы. Очень важно четко разграничивать погрешности измере­ний и инструментальные погрешности. Несовершенство средств измерений яв­ляется лишь одним из источников погрешности измерения и определяет только одну из ее составляющих − инструментальную погрешность. В свою очередь инструментальная погрешность является суммарной, составляющие которой − погрешности функциональных узлов − могут быть как систематическими, так и случайными.

Внешняя погрешность - составляющая погрешности измерения, вызывае­мая отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например, влияние температуры, внешних электрических и магнитных полей, механических воздействий и т.п.). Как правило, внешние погрешности определяются дополнительными погрешностями применяемых средств измерений и являются систематическими. Однако при нестабильности влияющих величин они могут стать случайными.

Субъективная (личная) погрешность обусловлена индивидуальными особенностями экспериментатора и может быть как систематической, так и случайной. При применении современных цифровых средств измерений субъективной погрешностью можно пренебречь. Однако при отсчете показаний стрелочных приборов такие погрешности могут быть и значительными из-за неправильного отсчета десятых долей деления шкалы, асимметрии, возникающей при установке штриха посередине между двумя рисками, и т.п. Например, погрешности, которые делает экспериментатор при оценивании десятых долей деления шкалы прибора, могут достигать 0,1 деления. Эти погрешности проявляются в том, что для разных десятых долей деления разным экспериментаторам свойственны различные частоты оценок, причем каждый экспериментатор сохраняет присущее ему распределение в течение длительного времени. Так, один экспериментатор чаще, чем следует, относит показания к линиям, обра­зующим края деления, и к значению 0,5 деления. Другой - к значениям 0,4 и 0,6 деления. Третий предпочитает значения 0,2 и 0,8 деления и т.д. В целом, имея в виду случайного экспериментатора, распределение погрешностей отсчитывания десятых долей деления можно считать равномерным с границами ±0,1 деления.

4.4 Формы представления погрешности измерения. Точность измерений

Погрешность измерения может быть представлена в форме абсолютной погрешности, выражаемой в единицах измеряемой величины и определяемой по формуле (4.1), или относительной погрешности, определяемой как отношение абсолютной погрешности к истинному значению измеряемой величины:

δ = Δ/Q. (4.5)

В случае выражения случайной погрешности в процентах, отношение Δ/Q умножается на 100 %. Кроме того, в формуле (4.5) допускается вместо истинного значения Q использовать результат измерения х.

Широко применяется также понятие точность измерений − характеристика, отражающая близость их результатов к истинному значению измеряемой величины. Другими словами, высокая точность соответствует малым погрешностям измерений. Поэтому количественно точность измерений можно оценить величиной, обратной модулю относительной погрешности

3.2. Округление

Одним из источников получения приближенных чисел является о кругление. Округляют как точные, так и приближенные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путемотбрасывания всех его цифр, записанныхправее цифры этого разряда, или путем замены его нулями. Этинули обычноподчеркивают или пишут их меньшими . Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такимиправилами :

чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1 ) если первая (слева) из отбрасываемых цифрменее 5 , то последнюю оставленную цифру не изменяют (округление снедостатком );

2 ) если первая отбрасываемая цифрабольше 5 или равна 5 , то последнюю оставленную цифру увеличивают на единицу (округление сизбытком ).*

Например :

Округлить :Ответы:

а ) до десятых 12,34; 12,34 ≈ 12,3;

б ) до сотых 3,2465; 1038,785; 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в ) до тысячных 3,4335; 3,4335 ≈ 3,434;

г ) до тысяч 12 375, 320 729. 12 375 ≈ 12000 ; 320 729 ≈ 321 000.

(* Несколько лет назад в случае отбрасывания одной лишь цифры 5 пользовались«правилом четной цифры»: последнюю цифру оставляли без изменения, если она четная, и увеличивали на единицу, если нечетная. Теперь «правила четной цифры»не придерживаются: если отбрасывают одну цифру5 , то к последней оставленной цифре добавляют единицу не зависимо от того, четная она или нечетная).

3.3. Абсолютная и относительная погрешность приближенного значения величин

Абсолютное значение разности между приближенным и точным (истинным) значением величины называетсяабсолютной погрешностью приближенного значения.Например , если точное число1,214 округлить до десятых, то получим приближенное число1,2 . В данном случае абсолютная погрешность приближенного числа составит1,214 – 1,2 = 0,014 .

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу , которую она не превышает. Это число называютграничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность.Например , число23,71 есть приближенное значение числа23,7125 с точностью до0,01 , так как абсолютная погрешность приближения равна0,0025 и меньше0,01 . Здесь граничная абсолютная погрешность равна0,01 .*

(* Абсолютная погрешность бывает и положительной и отрицательной.Например ,1,68 ≈ 1,7 . Абсолютная погрешность равна1,68 – 1,7 ≈ - 0,02 .Граничная погрешность всегда положительна).

Граничную абсолютную погрешность приближенного числа «а » обозначают символомΔ а . Запись

Х ≈ а (Δа)

следует понимать так: точное значение величины х находится в промежутке между числамиа а и а –Δ а, которые называют соответственнонижней иверхней границей х и обозначаютН Гх иВ Гх .

Например , еслих ≈ 2,3 ( 0,1), то2,2 < х < 2,4 .

Наоборот, если 7,3 < х < 7,4 , тох ≈ 7,35 ( 0,05).

Абсолютная или граничная абсолютная погрешность не характеризуют качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина.

Например , если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого измерения, в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой.

Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называютграничной относительной погрешностью ; обозначают её так:Δ а/а . Относительную и граничную относительную погрешности принято выражатьв процентах .

Например , если измерения показали, что расстояние между двумя пунктами больше12,3 км , но меньше12,7 км , то заприближенное значение его принимаютсреднее арифметическое этих двух чисел, т.е. ихполусумму , тогдаграничная абсолютная погрешность равнаполуразности этих чисел. В данном случаех ≈ 12,5 ( 0,2). Здесь граничнаяабсолютная погрешность равна0,2 км , а граничнаяотносительная:

Абсолютная и относительная погрешности

Абсолютной погрешностью измерения называется величина, определяемая разницей между результатом измерения x и истинным значением измеряемой величины x 0:

Δx = |x x 0 |.

Величина δ, равная отношению абсолютной погрешности измерения к результату измерения, называется относительной погрешностью:

Пример 2.1. Приближённым значением числа π является 3.14. Тогда погрешность его равна 0.00159… . Абсолютную погрешность можно считать равной 0.0016, а относительную погрешность равной 0.0016 / 3.14 = 0.00051 = 0.051 %.

Значащие цифры. Если абсолютная погрешность величины a не превышает одной единицы разряда последней цифры числа a, то говорят, что у числа все знаки верные. Приближённые числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52 400 равна 100, то это число должно быть записано, например, в виде 524 · 10 2 или 0.524 · 10 5. Оценить погрешность приближённого числа можно, указав, сколько верных значащих цифр оно содержит. При подсчёте значащих цифр не считаются нули с левой стороны числа.

Например, число 0.0283 имеет три верных значащих цифры, а 2.5400 – пять верных значащих цифр.

Правила округления чисел . Если приближённое число содержит лишние (или неверные) знаки, то его следует округлить. При округлении возникает дополнительная погрешность, не превышающая половины единицы разряда последней значащей цифры (d ) округлённого числа. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причём если первая отбрасываемая цифра больше или равна d /2, то последняя сохраняемая цифра увеличивается на единицу.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются (как и лишние нули). Например, если погрешность измерения 0.001 мм, то результат 1.07005 округляется до 1.070. Если первая из изменяемых нулями и отбра­сываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148 935 с точностью измерения 50 имеет округление 148 900. Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего чётного числа. Например, число 123.50 округляется до 124. Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783.6 округляется до 6784.

Пример 2.2. При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300 – 1284 = 16, а при округлении до 1280 абсолютная погрешность составляет 1280 – 1284 = 4.

Пример 2.3. При округлении числа 197 до 200 абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна 3/197 ≈ 0.01523 или приближённо 3/200 ≈ 1.5 %.

Пример 2.4. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближённое. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 = 1.4 %.

Погрешности решения задачи на PC

В качестве основных источников погрешности обычно рассматривают три вида ошибок. Это так называемые ошибки усечения, ошибки округления и ошибки распространения. Например, при использовании итерационных методов поиска корней нелинейных уравнений результаты являются приближёнными в отличие от прямых методов, дающих точное решение.

Ошибки усечения

Этот вид ошибок связан с погрешностью, заложенной в самой задаче. Он может быть обусловлен неточностью определения исходных данных. Например, если в условии задачи заданы какие-либо размеры, то на практике для реальных объектов эти размеры известны всегда с некоторой точностью. То же самое касается любых других физических параметров. Сюда же можно отнести неточность расчётных формул и входящих в них числовых коэффициентов.

Ошибки распространения

Данный вид ошибок связан с применением того или иного способа решения задачи. В ходе вычислений неизбежно происходит накопление или, иначе говоря, распространение ошибки. Помимо того, что сами исходные данные не являются точными, новая погрешность возникает при их перемножении, сложении и т. п. Накопление ошибки зависит от характера и количества арифметических действий, используемых в расчёте.

Ошибки округления

Это тип ошибок связан с тем, что истинное значение числа не всегда точно сохраняется компьютером. При сохранении вещественного числа в памяти компьютера оно записывается в виде мантиссы и порядка примерно так же, как отображается число на калькуляторе.

Cтраница 2


Математические действия над приближенными значениями величин называются приближенными, вычислениями. К настоящему времени создана целая наука о приближенных вычислениях, с рядом положений которой мы познакомимся в дальнейшем.  

Результат измерения всегда дает приближенное значение величины. Это связано с неточностью самих измерений, неидеальной точностью измерительных приборов.  

Что называется относительной погрешностью приближенного значения величины.  

В табл. 25 приведены приближенное значения величин / Си / - д при различных амплитудах Um0 для [ диода 6X6, нагруженного сопротивлением R 0 5 мгом. Эта таблица составлена проф.  

В математических таблицах обычно даются приближенные значения величин. При этом считают, что абсолютная погрешность не превосходит половины единицы последнего разряда.  

При этом возникает необходимость находить приближенные значения величин при условии, что граница относительной погрешности не должна превышать наперед заданного значения. На данном занятии будут рассмотрены задачи такого типа.  

Если в данном точном или приближенном значении величины число цифр больше, чем это необходимо по практическим соображениям, то это число округляют. Операция округления чисел состоит в отбрасывании нескольких цифр младших разрядов и замене их нулями; при этом последнюю удерживаемую цифру оставляют без изменения, если первая отбрасываемая цифра меньше 5; если она равна или больше 5, то цифру последнего удерживаемого разряда увеличивают на единицу.  

Условимся считать, что в приближенном значении величины все цифры верные, если его абсолютная погрешность не превышает половины единицы последнего разряда.  

При таком округлении число, характеризующее приближенное значение величины, состоит из верных цифр, а цифра низшего разряда этого числа (последняя в записи) имеет точность 1 того же разряда. Например, запись т 3 68 кг означает т 3 68 0 01 кг, а запись т3 680 кг означает т3 680 0 001 кг.  

Из уравнения видно, что сумма приближенных значений величин А и сумма их погрешностей являются приближенным значением сумм величин X и их абсолютной ошибкой.  

N) в (1) обозначено приближенное значение величины y (xi, x0, г / о), получаемое рассматриваемым методом.  

Расчеты, как правило, производятся с приближенными значениями величин - приближенными числами. Разумная оценка погрешности при вычислениях позволяет указать оптимальное количество знаков, которые следует сохранять при расчетах, а также в окончательном результате.  

В результате счета можно получить или точное или приближенное значение величины. При этом достаточным признаком приг ближенности результата счета является наличие разных ответов при повторных подсчетах.  

В действительности, средняя арифметическая X даст ему лишь приближенное значение величины а xf, и если сама схема его опыта была неудовлетворительна или приборы плохо проверены (например, измерительная линейка вместо 1 м равна 0 999 мм), то, как бы точно наш наблюдатель ни нашел значение а, у него нет оснований считать, что X или а соответствуют истинному значению скорости звука, которая может быть наблюдаема в других самых разнообразных опытах. Основное допущение, которое должно было бы оправдать применение способа средней арифметической к физическим измерениям такого рода, состоит в предположении, что неизвестная величина а xf или, другими словами, что измерение (или вычисление) производится без систематической ошибки.  

На практике, измеряя площади, мы чаще всего пользуемся приближенными значениями величин.  

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.