Информационно развлекательный портал
Поиск по сайту

Мышцы. Виды мышц, классификация, их строение и функции. Анатомия мышц. Строение скелетной мышцы и ее свойства

Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

Значение мышц в организме

Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Строение мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Форма и величина мышечных пучков

Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

Разновидности мускулатуры по выполняемым функциям

Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

  1. Разгибатели.
  2. Сгибатели.
  3. Приводящие.
  4. Отводящие.
  5. Вращательные.

Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Разновидности мускулатуры по расположению мышечных пучков

Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Группы мускулатуры по структурным особенностям

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


Мышцы - одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой - на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы - продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические - задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные - способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные - способствуют наклонным и вращательным движениям головы;
  • средние - создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной - приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота - дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной - создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние - состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние - играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими - актиновые, и толстыми - миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума - это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические - способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические - при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические - процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги - нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания - непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения - хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

Внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е 0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е 0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость - способность мышцы изменять длину под действием растягивающей силы.

Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

- способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый - в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

Знание основ анатомии, строения собственного тела вместе с пониманием смысла и структуры тренировок позволяет повысить результативность занятий спортом во много раз - ведь любое движение, любое спортивное усилие совершается при помощи мышц. Кроме того, мышечная ткань является значительной частью массы тела - у мужчин на её долю приходится 42-47% от сухой массы тела, у женщин - 30-35%, при чём физические нагрузки, в особенности спланированные силовые тренировки увеличивают удельный вес мышечной ткани, а физическое бездействие - напротив, его уменьшает.

Виды мышц

В организме человека имеется три вида мышц:

  • скелетные (их ещё называют поперечно-полосатыми);
  • гладкие;
  • и миокард, или сердечная мышца.

Гладкие мышцы формируют стенки внутренних органов и кровеносных сосудов. Их отличительной особенностью является то, что они работают независимо от сознания человека: усилием воли невозможно остановить, например, перистальтику (римичные сокращения) кишечника. Движения таких мышц медленные и однообраные, зато они непрерывно, без отдыха, работают всю жизнь.

Скелетная мускулатура ответственна за поддержание тела в равновесии и выполнение разнообразных движений. Вам кажется, что вы «просто» сидите в кресле и отдыхаете? На самом деле в это время десятки ваших скелетных мышц работают. Работой скелетной мускулатуры можно управлять усилием воли. Поперечно-полосатые мышцы способны быстро сокращаться и столь же быстро расслабляться, однако интенсивная деятельность сравнительно быстро приводит к их утомлению.

Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен иненсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Кстати, силовые тренировки не только «лепят рельеф» и увеличивают силу наших скелетных мышц - они также косвенно улучшают и качество работы гладкой мускулатуры и сердечной мышцы. Кстати, это привордит и к эффекту «обратной связи» — укреплённая, развитая путём тренировок выносливости сердечная мышца работает интенсивнее и эффективнее, что выражается в улучшении кровоснабжения всего организма, в том числе и скелетных мышц, колторые благодаря этому могут переносить ещё большие нагрузки. Тренированные, развитые скелетные мышцы формируют мощный «корсет», поддерживающий внутренние органы, что играет не последнюю роль в нормализации процессов пищеварения. Нормальное пищеварение в свою очередь означает нормальное питание всех органов тела, и мышц в частности.

Различные типы мышц отличаются по своему строению, мы же рассмотрим подробнее строение скелетной мышцы, как связанной непосредственно с процессом силовой тренировки.

Заострим внимание на скелетных мышцах

Основной структурной составляющей мышечной ткани является миоцит - мышечная клетка. Одной из отличительных черт миоцита является то, что его длина в сотни раз превосходит его поперечное сечение, поэтому миоцит называют также мышечным волокном. От 10 до 50 миоцитов соединяются в пучок, а из пучков формируется собственно мышца - в бицепсе, например, до миллиона мышечных волокон.

Между пучками мышечных клеток проходят мельчайшие кровеносные сосуды - капилляры, и нервные волокна. Пучки мышечных волокон и сами мышцы покрыты плотными оболочками из соединительной ткани, которые на концах своих переходят в сухожилия, прикрепляющиеся к костям.

Основное вещество мышечной клетки называется саркоплазмой. В неё погружены тончайшие мышечные нити - миофибриллы, которые и являются сократительными элементами мышечной клетки. Каждая миофибрилла состоят из тысяч элементарных частиц - саркомеров, основной особенностью которых является способность сокращаться под воздействием нервного импульса.

В ходе целенаправленных силовых тренировок увеличивается как количество миофибрилл мышечного волокна, так и их поперечное сечение. Сначала этот процесс приводит к увеличению силы мышцы,затем - и к увеличению её толщины. Однако количество самих мышечных волокон остаётся прежним - оно обусловлено генетическими особенностями развития организма и в течении жизни не меняется. Отсюда можно сделать вывод и о различных физических перспективах спортсменов - те из них, чьи мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц за счёт силовых тренировок, чем те спортсмены, чьи мышцы содержат меньше волокон.

Итак, сила скелетной мышцы зависит от её поперечного сечения - то есть от толщины и количества миофибрилл, формирующих мышечное волокно. Однако возрастают показатели силы и мышечной массы не одинаково: при увеличении мышечной массы в два раза, сила мышц становится в три раза большей, и единого объяснения этого феномена у учёных пока что нет.

Типы волокон скелетной мышцы

Волокна, формирующие скелетные мушцы, делятся на две группы: «медленные», или ST-волокна (slow twitch fibers) и «быстрые», FT-волокна (fast twitch fibers). ST-волокна содржат большое количество белка миоглобина, имеющего красный цвет, поэтому их ещё называют красными волокнами. Это - выносливые волокна, но работают они при нагрузке в пределах 20-25% от максимальной силы мышц. В свою очередь, FT-волокна содержат мало миоглобина, поэому их называют ещё «белыми» волокнами. Они сокращаются в два раза быстрее «красных» волокон и способны развить в 10 раз большую силу.

При нагрузках менее 25% от максимальной мышечной силы сначала работают ST-волокна, а потом, когда наступит их истощение - в работу включаются FT-волокна. Когда и они израсходуют энергетический ресурс, наступит их истощение и мышце потребуется отдых. Если же нагрузка изначально велика - одновременно работают оба вида волокон.

Однако не стоит ошибочно ассоциировать типы волокон со скоростью движений, которые выполняет человек. То, какой тип волокон преимущественно задействован в работа в данный момент, зависит не от скорости выполняемого движения, а от усилия, которое необходимо затратить на данное действие. С этим связано и то обстоятельство, что разные типы мышц, выполняющие различные функции, имеют пазное соотношение ST- и FT-волокон. В частности, бицепс - мышца, выполняющая преимущественно динамическую работу, содержит больше FT-волокон, чем ST. Напротив, камбаловидная мышца, испытывающая в основном статические нагрузки, состоит главным образом из ST-волокон.

Кстати, как и общее количество мышечных волокон, соотношение ST/FT волокон в мышцах конкретного человека является генетически обусловленным и сохраняется постоянным на протяжении всей жизни. Это также объясняет врождённые способности к определённым видам спорта: у самых «талантливых», выдающихся бегунов-спринтеров икроножные мышцы на 90% состоят из «быстрых» волокон, а у марафонцев - напротив, до 90% этих волокон - медленные.

Впрочем, несмотря на то, что природное количество мышечных волокон, а также соотношение их быстрой и медленной разновидностей изменить невозможно, грамотно спланированные и настойчивые тренировки заставят мышцы приспособляться к нагрузкам и непременно принесут результат.

Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.