Информационно развлекательный портал
Поиск по сайту

Как меняется температура с высотой в горах. Как вы думаете, почему с высотой температура воздуха понижается? Определение высоты уровней конденсации и сублимации

Температура воздуха, безусловно, важный элемент комфортабельности человека. Мне, например, угодить в этом плане очень сложно, зимой я жалуюсь на холод, летом изнываю от жары. Однако этот показатель не статичен, ведь чем выше точка от поверхности Земли, тем там холоднее, но с чем связано подобное положение вещей? Начну с того, что температура - это одно из состояний нашей атмосферы , которая состоит из смеси самых разнообразных газов. Чтобы понять принцип "высотного похолодания", совсем не обязательно углубляться в изучение термодинамических процессов.

Почему изменяется температура воздуха с набором высоты

Еще со времен школьных уроков мне известно, что на вершинах гор и скалистых образований наблюдается снег даже в том случае, если у их подножья достаточно тепло . Это и является главным доказательством того, что на больших высотах может быть очень холодно. Однако не все так категорично и однозначно, дело в том, что при восхождении вверх воздух то остывает, то снова нагревается. Равномерное снижение наблюдается лишь до определенного момента, затем атмосфера в буквальном смысле лихорадит , проходя через следующие этапы:

  1. Тропосфера.
  2. Тропопауза.
  3. Стратосфера.
  4. Мезосфера и т.д.


Температурные колебания в разных слоях

Тропосфера отвечает за большинство погодных явлений , ведь она - самый низкий слой атмосферы, где летают самолеты и образуются облака. Находясь в ней, воздух стабильно замерзает, приблизительно каждые сто метров. Но, достигая тропопаузы, температурные колебания прекращаются и останавливаются в районе -60-70 градусов по Цельсию .


Самое удивительное, что в стратосфере она снижается практически до нуля, поскольку поддается нагреву от ультрафиолетового излучения . В мезосфере тенденция снова идет на снижение, а переход в термосферу сулит рекордный минимум - -225 по Цельсию . Далее происходит снова нагревание воздуха, однако из-за значительной потери в плотности, на этих уровнях атмосферы температура ощущается совсем иначе. По крайней мере, полетам орбитальных искусственных спутников ничто не угрожает.

Все, кто летал на самолете, привыкли к сообщению такого рода: «наш полет проходит на высоте 10 000 м, температура за бортом - 50 °С». Кажется, ничего особенного. Чем дальше от нагретой Солнцем поверхности Земли, тем холоднее. Многие думают, что понижение температуры с высотой идет непрерывно и постепенно температура падает, приближаясь к температуре космоса. Между прочем, так думали ученые вплоть до конца 19 века.

Разберемся подробнее с распределением температуры воздуха над Землей. Атмосферу подразделяют на несколько слоев, которые и отражают в первую очередь характер изменения температуры.

Нижний слой атмосферы называется тропосферой , что означает „сфера поворота". Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,— примерно на высоте 15—16 км над экватором и 7—8 км над полюсами. Как и сама Земля, атмосфера под влиянием вращения нашей планеты тоже несколько сплющена над полюсами и разбухает над экватором. Однако этот эффект выражен в атмосфере значительно сильнее, чем в твердой оболочке Земли. В направлении от поверхности Земли к верхней границе тропосферы температура воздуха понижается. Над экватором минимальная температура воздуха составляет около —62°С, а над полюсами около —45°С. В умеренных широтах более 75% массы атмосферы находится в тропосфере. В тропиках же в пределах тропосферы находится около 90% массы атмосферы.

В 1899 г. в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы — к стратосфере , что означает „сфера слоя". Термин стратосфера означает и отражает прежнее представление о единственности слоя, лежащего выше тропосферы. Стратосфера простирается до высоты около 50 км над земной поверхностью. Особенностью ее является, в частности, резкое повышение температуры воздуха. Это повышение температуры объясняют реакцией образования озона — одной из главных химических реакций, происходящих в атмосфере.

Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. Взаимодействие кислорода с ультрафиолетовыми лучами — один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Озоносфера поглощает часть лучистой энергии, проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы — стратопаузы (50 км), достигая, по некоторым данным, 0 °С.

На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой . Слово „мезосфера" означает „промежуточная сфера", здесь температура воздуха продолжает понижаться с высотой. Выше мезосферы, в слое, называемом термосферой , температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до —96°С. Однако падает не беспредельно, потом температура снова увеличивается.

Термосфера является первым слоем ионосферы . В отличие от упомянутых ранее слоев, ионосфера выделена не по температурному признаку. Ионосфера является областью, имеющей электрическую природу, благодаря которой становятся возможными многие виды радиосвязи. Ионосферу делят на несколько слоев, обозначая их буквами D, Е, F1 и F2 Эти слои имеют и особые названия. Разделение на слои вызвано несколькими причинами, среди которых самая важная—неодинаковое влияние слоев на прохождение радиоволн. Самый нижний слой, D, в основном поглощает радиоволны и тем самым препятствует дальнейшему их распространению. Лучше всего изученный слой Е расположен на высоте примерно 100 км над земной поверхностью. Его называют также слоем Кеннелли — Хевисайда по именам американского и английского ученых, которые одновременно и независимо друг от друга обнаружили его. Слой Е, подобно гигантскому зеркалу, отражает радиоволны. Благодаря этому слою длинные радиоволны проходят более далекие расстояния, чем следовало бы ожидать, если бы они распространялись только прямолинейно, не отражаясь от слоя Е. Аналогичные свойства имеет и слой F. Его называют также слоем Эпплтона. Вместе со слоем Кеннелли—Хевисайда он отражаем радиоволны к наземным радиостанциями Такое отражение может происходить под различными углами. Слой Эпплтона расположен на высоте около 240 км.

Самая внешняя область атмосферы, второй слой ионосферы, часто называется экзосферой . Этот термин указывает на существование окраины космоса вблизи Земли. Определить, где именно кончается атмосфера и начинается космос, трудно, поскольку с высотой плотность атмосферных газов уменьшается постепенно и сама атмосфера плавно превращается почти в вакуум, в котором встречаются лишь отдельные молекулы. Уже на высоте примерно 320 км плотность атмосферы настолько мала, что молекулы, не сталкиваясь друг с другом, могут проходить путь более 1 км. Самая внешняя часть атмосферы служит как бы ее верхней границей, которая располагается на высотах от 480 до 960 км.

Подробнее о процессах а атмосфере можно узнать на сайте «Земной климат»


Публикуется с небольшими сокращениями

Прежде чем рассмотреть распределение температуры воздуха на земной поверхности в наиболее холодные и наиболее теплые месяцы, необходимо сказать об изменении температуры с высотой, так как изотермы всех местностей приводятся к уровню моря; надо знать, каким образом происходит этот процесс приведения.
До сих пор мы говорили о нагревании поверхности земли, теперь рассмотрим условия нагревания воздушной оболочки, соприкасающейся с этой поверхностью.
Нагревание атмосферы происходит, как мы уже говорили, отчасти непосредственно солнцем: пары воды, углекислый газ и пылинки поглощают часть солнечных лучей. Но, главным образом, нагревание воздуха происходит путем передачи тепла от нагретой поверхности земли, теплопроводностью и лучеиспусканием. Чем теплопрозрачность атмосферы меньше (например при большом количестве водяных паров или углекислого газа в воздухе), тем больше задерживает она тепло, испускаемое земной поверхностью, и тем больше, следовательно, нагревается от земли.
По многим причинам следовало бы ожидать, что в верхних слоях воздуха температура будет ниже, чем в нижних: 1) верхние слои атмосферы более разрежены, поэтому они менее задерживают теплоту, получаемую непосредственно от солнца, и 2) нагревание воздуха, главным образом, происходит снизу. Но вместе с тем воздух, как и вода, i стремится расположиться так, чтобы наверху были более теплые и легкие слои, а внизу более холодные и тяжелые. Действительно, воздух, соприкасающийся с земной поверхностью, нагреваясь, расширяется, делается менее плотным и поднимается кверху, а более плотный и холодный воздух опускается вниз. В результате такой циркуляции можно было бы ожидать, что вверху и внизу атмосфера будет иметь одинаковую температуру (по крайней мере в некоторые моменты дня) или температура будет повышаться кверху. На самом же деле наблюдения и опыт показали, что температура в общем понижается с высотой, но причина этого понижения заключается в другом, а именно: поднимающиеся теплые частицы воздуха попадают в более редкие слои, поэтому постепенно расширяются при своем поднятии, причем на расширение тратится известное количество тепла, т. е. работа расширения воздуха происходит за счет его теплоты. При поднятии массы воздуха в атмосфере без притока тепла со стороны, или, как говорят, при адиабатическом процессе, температура этой массы понижается (вследствие расширения) на 1° при поднятии на 100 м. Это положение применимо к сухому воздуху, а также к воздуху, содержащему водяные пары, когда при охлаждении не начинается еще их конденсация. Воздух, насыщенный парами воды, теряет меньше: при поднятии на 100 м он охлаждается не на 1°, а приблизительно на на 0,5-0°,4. Это объясняется следующим: если поднимается воздух, насыщенный парами, то при понижении температуры (вследствие расширения воздуха) пары сгущаются и часть их переходит в жидкое состояние, причем выделяется скрытая теплота парообразования.
При своем опускании воздух нагревается, потому что он все больше и больше сжимается, причем вследствие сжатия развивается теплота. При опускании как сухого, так и насыщенного водяными парами воздуха величина нагревания одинакова и равна 1° на каждые 100 м. Наблюдения над изменением температуры воздуха с высотой производятся на горах, на высоких постройках, кроме того, производились опыты с воздушными шарами, змеями и аэропланами, которые, снабжались метеорографами - приборами, записывающими автоматически не только температуру, но также давление, влажность воздуха и скорость ветра на разных высотах. В последние годы температуру на высоте изучают при помощи радиозондов, а также во время полетов на стратостатах.
Первоначально наблюдения производились на Эйфелевой башне, которая доступна действию более или менее свободного воздуха, причем термометры были установлены так, чтобы прямая лучистая солнечная энергия не действовала непосредственно на них. Они были установлены на высоте 2 м, 123 м. 197 м, 302 м. Оказывается, что днем в нижних слоях атмосферы постоянно теплее, чем в верхних слоях, причем летом, когда земля, а следовательно, и нижние слои атмосферы сильно нагреты, уменьшение температуры с поднятием на каждые 100 м более адиабатической величины, т. е. более 1°.
Летом циркуляция воздуха бывает особенно энергична и даже бывает заметна (на глаз); в жаркий летний день мы видим, что воздух как бы струится над сильно нагретыми поверхностями.
При таком состоянии воздух, как говорят, находится в неустойчивом равновесии, нагреваясь от подстилающей поверхности. Ночью, как показали наблюдения на Эйфелевой башне, внизу над поверхностью земли воздух холоднее, чем в верхних слоях. Такое распределение температуры носит название нижней инверсии температуры, в отличие от другой инверсии, сделавшейся известной сравнительно недавно и называемой верхней. Объясняется нижняя инверсия тем, что земля за ночь излучает очень много теплоты и поэтому сильно охлаждается. Это охлаждение передается нижним слоям воздуха, которые делаются более плотными и стекают вниз, стремясь заполнить углубления. Поэтому-то в гористых местностях в долинах зимой бывает очень холодно, а на склонах гор несколько теплее. Особенно резко инверсия выражается во время ясных зимних ночей.
Наблюдения на более значительной высоте (около 3-4 км), где температура земли не играет уже такой роли, показали, что инверсии там существуют значительно реже. Падение температуры с высотой, рассчитанное на 100 м (вертикальный температурный градиент), при подъеме в слоях атмосферы, превышающих 2-3 км, постепенно возрастает и на высотах 7-10 км достигает своего максимума. В этих высоких слоях инверсий нет, и температура обусловлена, главным образом, конвекционными восходящими и нисходящими токами. Восходящие токи дают для воздуха, не насыщенного водяными парами, падение температуры в 1° на 100 м поднятия; для воздуха, насыщенного водяными парами, падение температуры значительно меньше (см. выше). По этой причине на этих высотах температурные градиенты зимой, когда в атмосфере мало водяных паров, бывают больше, чем летом.
На еще больших высотах (выше 7-10 км) температурный градиент начинает быстро падать, затем падение температуры совсем прекращается, и даже наступает небольшое повышение температуры (верхняя инверсия). Таким образом, толщу атмосферы можно разделить на два слоя: нижний, в котором происходит понижение температуры с высотой, и затем верхний, где этого понижения нет, а, наоборот, наблюдается небольшое повышение. Первым - нижним - слоям дано название тропосферы, а вторым - верхним - стратосферы.
В среднем граница стратосферы находится на высоте 11 км. Наблюдения показали, что граница стратосферы к экватору поднимается, к полюсам опускается. Так, в полярных странах граница стратосферы находится на высоте 8-10 км, в средней Европе 11-12 км, тогда как под тропиками она на высоте 16-18 км. Вследствие этого под тропиками в высоких слоях температура на той же высоте ниже, чем над полюсами. Очевидно, чем выше находится граница стратосферы, тем больше будет понижение температуры с высотой. Самая низкая температура в верхних слоях тропосферы была найдена недалеко от экватора.
Наблюдения в Батавии, в нескольких градусах к югу от экватора, дали цифры около -87°, один раз на высоте 17 км даже -91°,9.
Это самая низкая температура, которая наблюдалась в атмосфере. Над Европой наиболее низкие температуры редко опускаются ниже-70°. Высота границы стратосферы изменяется и в течение года. Минимум ее высоты наблюдается зимой или ранней весной, максимума она постигает к концу лета.
Все сказанное относится к верхним слоям атмосферы, для толщи же атмосферы в 4-5 км можно принять, что понижение температуры с высотой, при поднятии на 100 м, в среднем за год равно 0,5-0°,6, и эту величину имеют в виду, когда приводят температуру к уровню моря. В горах и на плоскогорьях при изменении температуры с высотой имеют значение разные побочные обстоятельства, например, обращен ли склон горы к солнцу или находится в тени. Кроме того, там, где зимы бывают суровые, вершины часто имеют более высокую температуру, чем долины, и такая инверсия температуры существует не только ночью, а держится в продолжение всего холодного периода. Так, в Восточной Сибири зимой бывает затишье вследствие высокого барометрического давления, и поверхность земли покрыта снегом, который отражает много тепла; холодный воздух там вследствие большей плотности наполняет долины и впадины и задерживается в них, тогда как на вершинах хребтов в это время держится более высокая температура. Аналогичное явление наблюдалось и во многих альпийских долинах, защищенных горами от господствующих ветров. Но в общем и для гор можно принять понижение температуры на каждые 100 м поднятия равным 0°,5 в среднем за год, причем летом и весной падение температуры происходит быстрее, зимой и осенью медленнее.

Популярные статьи сайта из раздела «Сны и магия»

Если приснился плохой сон...

Если приснился какой-то плохой сон, то он запоминается почти всем и не выходит из головы длительное время. Часто человека пугает даже не столько само содержимое сновидения, а его последствия, ведь большинство из нас верит, что сны мы видим совсем не напрасно. Как выяснили ученые, плохой сон чаще всего снится человеку уже под самое утро...

Практический материал для урока географии в 6 классе - УМК: О.А. Климанова, В.В. Климанов, Э.В. Ким. Для рассмотрения предлагаются задачи по теме «Температура воздуха».

Решение географических задач способствует активному усвоению курса географии, формирует общеучебные и специальные географические навыки.

Цели:

Развитие умений высчитывать температуру воздуха на разных высотах, вычислять высоту;

Развитие способностей анализировать, делать выводы.

Как изменяется температура с высотой?

При изменении высоты на 1000 метров (1 км) температура воздуха изменяется на 6°С (при увеличении высоты температура воздуха понижается, а при уменьшении - повышается).

Географические задачи:

1.На вершине горы температура -5 градусов высота горы 4500 м. Определите температуру у подножия горы?

Решение:

На каждый километр вверх температура воздуха понижается на 6 градусов, то есть, если высота горы 4500 или 4,5 км получается, что:

1) 4,5 х 6 = 27 градусов. Это значит, что на 27 градусов понизилась температура, а если на вершине - 5 градусов, то у подножия горы будет:

2) - 5 + 27 = 22 градуса у подножия горы

Ответ: 22 градуса у подножия горы

2.Определите температуру воздуха на вершине горы 3 км, если у подножия горы она составила + 12 градусов.

Решение:

Если через 1 км температура понижается на 6 градусов, следовательно

Ответ: - 6 градусов на вершине горы

3. На какую высоту поднялся самолет, если за его бортом температура -30°С, а у поверхности Земли +12°С?

Решение:

2) 42: 6 = 7 км

Ответ: самолёт поднялся на высоту 7 км

4. Какова температура воздуха на вершине Памире, если в июле у подножия она составляет +36°С? Высота Памира 6 км.

Решение:

Ответ: 0 градусов на вершине горы

5. Определите температуру воздуха за бортом самолета, если температура воздуха у поверхности земли равна 31 градус, а высота полета - 5 км?

Решение:

Ответ : 1 градус температура за бортом самолета

Как изменяется температура с высотой? В данной статье будет размещена информация, которая будет содержать ответы на этот и подобные вопросы.

Как изменяется температура воздуха на высоте?

При подъеме вверх температура воздуха в тропосфере понижается на 1 км — 6 °С. Поэтому высоко в горах лежит снег

Атмосфера делится на 5 основных слоев: тропосфера, стратосфера, верхние слои атмосферы. Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

Что такое вертикальный градиент температуры?

Вертикальный градиент температуры — это изменение температуры воздуха на высоте каждые 100 м. Вертикальный градиент зависит от нескольких факторов, таких как: время года (зимой температура ниже, летом — выше); время суток (ночью холоднее, чем днем) и др. Среднее значение градиента температуры составляет около 0,6 ° С / 100 м.

В приземном слое атмосферы градиент зависит от погоды, времени суток и от характера подстилающей поверхности. Днем ВГТ почти всегда положительный, особенно летом, при ясной погоде он в 10 раз больше, чем во время мрачной. В обед летом температура воздуха у поверхности почвы может быть на 10-15 ° С превышать температуру воздуха на высоте 2-х м. Из-за этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500 ° С / 100 м. Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают вертикальный градиент температуры облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмосферы. Над обнаженной почвой (паровое поле) ВГТ больше, чем над развитым посевом или щелочью. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и обычно отрицательный.

С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и он уменьшается по сравнению с его значениями в приземном слое воздуха. Выше 500м затухает влияние суточного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6 ° С / 100м. На высоте 6-9км градиент температуры растет и составляет 0,65-0,75 ° С / 100м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2 ° С / 100м.

Данные о вертикальном градиенте температуры в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслуживании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в приземном слое воздуха ночью весной и осенью указывает на возможность заморозков.

Итак, надеемся, что в данной статье, Вы нашли не только полезную и познавательную информацию, но и ответ на вопрос «как изменяется температура воздуха с высотой».