Информационно развлекательный портал
Поиск по сайту

Два комплексных числа равны если. §1. Комплексные числа: основные определения

Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi , где a , b - действительные числа, а i - так называемая мнимая единица , символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью , а число b - мнимой частью комплексного числа z = a + bi . Если b = 0, то вместо a + 0i пишут просто a . Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a ; b ) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a ; b ) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z |. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z . Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ ; r · sin φ ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z | · (cos(Arg z ) + i sin(Arg z )). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра : z n = |z | n · (cos(n · (Arg z )) + i sin(n · (Arg z ))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w , что w n = z . Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n -й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n -угольника).

§1. Комплексные числа

1°. Определение. Алгебраическая форма записи.

Определение 1 . Комплексными числами называются упорядоченные пары действительных чисели, если для них определены понятие равенства, операции сложения и умножения, удовлетворяющие следующим аксиомам:

1) Два числа
и
равны тогда и только тогда, когда
,
, т.е.


,
.

2) Суммой комплексных чисел
и

и равное
, т.е.


+
=
.

3) Произведением комплексных чисел
и
называется число, обозначаемое
и равное, т.е.

∙=.

Множество комплексных чисел обозначаетсяC .

Формулы (2),(3) для чисел вида
принимают вид

откуда следует, что операции сложения и умножения для чисел вида
совпадают со сложением и умножением для вещественных чисел комплексное число вида
отождествляется с вещественным числом.

Комплексное число
называетсямнимой единицей и обозначается , т.е.
Тогда из (3)

Из (2),(3)  что и значит

Выражение (4) называется алгебраической формой записи комплексного числа.

В алгебраической форме записи операции сложения и умножения принимают вид:

Комплексное число обозначают
,– вещественная часть,– мнимая часть,– чисто мнимое число. Обозначение:
,
.

Определение 2 . Комплексное число
называетсясопряженным с комплексным числом
.

Свойства комплексного сопряжения.

1)

2)
.

3) Если
, то
.

4)
.

5)
– вещественное число.

Доказательство проводится непосредственным вычислением.

Определение 3 . Число
называетсямодулем комплексного числа
и обозначается
.

Очевидно, что
, причем


. Также очевидны формулы:
и
.

2°. Свойства операций сложения и умножения.

1) Коммутативность:
,
.

2) Ассоциативность:,
.

3) Дистрибутивность: .

Доказательство 1) – 3) проводится непосредственными вычислениями на основе аналогичных свойств для вещественных чисел.

4)
,
.

5) , C ! , удовлетворяющее уравнению
. Такое

6) ,C , 0, ! :
. Такое находится умножением уравнения на



.

Пример. Представим комплексное число
в алгебраической форме. Для этого умножим числитель и знаменатель дроби на число, сопряженное знаменателю. Имеем:

3°. Геометрическая интерпретация комплексных чисел. Тригонометрическая и показательная форма записи комплексного числа.

Пусть на плоскости задана прямоугольная система координат. Тогда
C можно поставить в соответствие точку на плоскости с координатами
.(см. рис. 1). Очевидно, что такое соответствие является взаимно однозначным. При этом действительные числа лежат на оси абсцисс, а чисто мнимые ­− на оси ординат. Поэтому ось абсцисс называютдействительной осью , а ось ординат − мнимой осью . Плоскость, на которой лежат комплексные числа, называется комплексной плоскостью .

Отметим, что и
симметричны относительно начала координат, аисимметричны относительноOx.

Каждому комплексному числу (т.е. каждой точке на плоскости) можно поставить в соответствие вектор с началом в точке O и концом в точке
. Соответствие между векторами и комплексными числами является взаимно однозначным. Поэтому вектор, соответствующий комплексному числу, обозначается той же буквой

Длина вектора
соответствующего комплексному числу
, равна
, причем
,
.

С помощью векторной интерпретации можно видеть, что вектор
− сумма векторови, а
− сумма векторови
.(см. рис. 2). Поэтому справедливы неравенства: ,

Наряду с длиной векторавведем в рассмотрение уголмежду вектороми осьюOx, отсчитываемый от положительного направления оси Ox: если отсчет ведется против часовой стрелки, то знак величина угла рассматривается положительной, если по часовой стрелке – то отрицательной. Этот угол называется аргументом комплексного числа и обозначается
. Уголопределяется не однозначно, а с точностью
… . Для
аргумент не определяется.

Формулы (6) задают так называемую тригонометрическую форму записи комплексного числа.

Из (5) следует, что если
и
то

,
.

Из (5)
что поикомплексное число определяется однозначно. Обратное неверно: а именно, по комплексному числуего модульнаходится однозначно, а аргумент, в силу (7), − с точностью
. Также из (7) следует, что аргументможет быть найден как решение уравнения

Однако не все решения этого уравнения являются решениями (7).

Среди всех значений аргумента комплексного числа выбирается одно, которое называется главным значением аргумента и обозначается
. Обычно главное значение аргумента выбирается либо в интервале
, либо в интервале

В тригонометрической форме удобно производить операции умножения и деления.

Теорема 1. Модуль произведения комплексных чисел и равен произведению модулей, а аргумент – сумме аргументов, т.е.

, а .

Аналогично

,

Доказательство. Пусть ,. Тогда непосредственным умножением получаем:

Аналогично

.■

Следствие (формула Муавра). Для
справедлива формула Муавра

Пример. Пусть Найдем геометрическое местоположение точки
. Из теоремы 1 следует, что .

Поэтому для ее построение необходимо вначале построить точку , являющуюся инверсией относительно единичной окружности, а затем найти точку, симметричную ей относительно оси Ox.

Пусть
,т.е.
Комплексное число
обозначается
, т.е.R справедлива формула Эйлера

Так как
, то
,
. Из теоремы 1
что с функцией
можно работать как с обычной показательной функцией, т.е. справедливы равенства

,
,
.

Из (8)
показательная форма записи комплексного числа

, где
,

Пример. .

4°. Корни -ой степени из комплексного числа.

Рассмотрим уравнение

,
С ,
N .

Пусть
, а решение уравнения (9) ищется в виде
. Тогда (9) принимает вид
, откуда находим, что
,
, т.е.

,
,
.

Таким образом, уравнение (9) имеет корни

,
.

Покажем, что среди (10) имеется ровно различных корней. Действительно,

различны, т.к. их аргументыразличны и отличаются меньше, чем на
. Далее,
, т.к.
. Аналогично
.

Таким образом, уравнение (9) при
имеет ровнокорней
, расположенных в вершинах правильного-угольника, вписанного в окружность радиусас центром в т.O.

Таким образом, доказана

Теорема 2. Извлечение корня -ой степени из комплексного числа
всегда возможно. Все значения корня -ой степени израсположены в вершинах правильного-угольника, вписанного в окружность с центром в нуле и радиуса
. При этом,

Следствие. Корни –ой степени из 1 выражаются формулой

.

Произведение двух корней из 1 является корнем, 1 – корень -ой степени из единицы,корня
:
.

При изучении свойств квадратного уравнения ставилось ограничение - для дискриминанта меньше нуля решения не существует. Сразу оговаривалось, что речь идет о множестве вещественных чисел. Пытливый ум математика заинтересуется - какой секрет содержится в оговорке о вещественных значениях?

Со временем математики ввели понятие комплексных чисел, где за единицу принимается условное значение корня второй степени из минус единицы.

Историческая справка

Математическая теория развивается последовательно, от простого к сложному. Разберемся, как возникло понятие, получившее название "комплексное число", и зачем оно нужно.

С незапамятных времен основу математики составлял обычный счет. Исследователям было известно только натуральное множество значений. Сложение и вычитание при этом производилось просто. По мере усложнения хозяйственных отношений вместо сложения одинаковых значений начали применять умножение. Появилась обратная операция к умножению - деление.

Понятие натурального числа ограничивало использование арифметических операций. На множестве целых значений невозможно решать все задачи деления. привела сначала к понятию рациональных значений, а потом и к иррациональным значениям. Если для рационального можно указать точное расположение точки на линии, то для иррациональных такую точку указать невозможно. Можно только приблизительно указать интервал нахождения. Объединение рациональных и иррациональных числе образовали вещественное множество, которое можно представить как некоторую линию с заданным масштабом. Каждый шаг по линии - это натуральное число, а между ними располагаются рациональные и иррациональные значения.

Началась эпоха теоретической математики. Развитие астрономии, механики, физики требовало решения все более сложных уравнений. В общем виде были найдены корни квадратного уравнения. При решении более сложного кубического многочлена ученые столкнулись с противоречием. Понятие кубического корня из отрицательного имеет смысл, а для квадратного получается неопределенность. При этом квадратное уравнение - только частный случай кубического.

В 1545 году итальянец Дж. Кардано предложил ввести понятие мнимого числа.

Таким числом стал корень второй степени из минус единицы. Окончательно термин комплексного числа сформировался только через триста лет, в работах известного математика Гаусса. Он предложил формально распространить на мнимое число все законы алгебры. Вещественная прямая расширилась до плоскости. Мир стал больше.

Основные понятия

Вспомним ряд функций, которые имеют ограничения на вещественном множестве:

  • y = arcsin(x), определена в интервале значений между отрицательной и положительной единицей.
  • y = ln(x), имеет смысл при положительных аргументах.
  • квадратный корень y = √x, рассчитывается только для x ≥ 0.

Обозначением i = √(-1), введем такое понятие, как мнимое число, это позволит снять все ограничения с области определения вышеприведенных функций. Выражения типа y = arcsin(2), y = ln(-4), y = √(-5) приобретают смысл в некотором пространстве комплексных чисел.

Алгебраическую форму можно записать в виде выражения z = x + i×y на множестве вещественных значений x и y, а i 2 = -1.

Новое понятие снимает все ограничения на использование любой алгебраической функции и своим видом напоминает график прямой в координатах вещественных и мнимых значений.

Комплексная плоскость

Геометрическая форма комплексных чисел наглядно позволяет представить многие их свойства. По оси Re(z) отмечаем вещественные значения x, по Im(z) - мнимые величины y, тогда точка z на плоскости будет отображать требуемое комплексное значение.

Определения:

  • Re(z) - реальная ось.
  • Im(z) - означает мнимую ось.
  • z - условная точка комплексного числа.
  • Численное значение длины вектора от нулевой точки до z, называется модулем.
  • Реальная и мнимая оси разбивают плоскость на четверти. При положительном значении координат - I четверть. При аргументе реальной оси меньше 0, а мнимой больше 0 - II четверть. Когда координаты отрицательные - III четверть. Последняя, IV четверть содержит множество положительных реальных значений и отрицательных мнимых величин.

Таким образом на плоскости со значениями координат x и y всегда можно наглядно изобразить точку комплексного числа. Символ i вводится для отделения реальной части от мнимой.

Свойства

  1. При нулевом значении мнимого аргумента получаем просто число (z = x), которое располагается на реальной оси и принадлежит вещественному множеству.
  2. Особый случай, когда значение реального аргумента становится нулевым, выражение z = i×y соответствует расположению точки на мнимой оси.
  3. Общий вид z = x + i×y будет при ненулевых значениях аргументов. Означает расположение точки, характеризующей комплексное число, в одной из четвертей.

Тригонометрическая запись

Вспомним полярную систему координат и определение sin и cos. Очевидно, что с помощью этих функций можно описать расположение любой точки на плоскости. Для этого достаточно знать длину полярного луча и угол наклона к вещественной оси.

Определение. Запись вида ∣z ∣, умноженное на сумму тригонометрических функций cos(ϴ) и мнимой части i ×sin(ϴ), называется тригонометрическим комплексным числом. Здесь применяется обозначение угол наклона к вещественной оси

ϴ = arg(z), а r = ∣z∣, длина луча.

Из определения и свойств тригонометрических функций, следует очень важная формула Муавра:

z n = r n × (cos(n × ϴ) + i × sin(n × ϴ)).

Используя эту формулу, удобно решать многие системы уравнений, содержащие тригонометрические функции. Особенно когда возникает задача возведения в степень.

Модуль и фаза

Для завершения описания комплексного множества предложим два важных определения.

Зная теорему Пифагора, легко вычислить длину луча в полярной системе координат.

r = ∣z∣ = √(x 2 + y 2), такая запись на комплексном пространстве носит название "модуль" и характеризует расстояние от 0 до точки на плоскости.

Угол наклона комплексного луча к вещественной прямой ϴ принято называть фазой.

Из определения видно, что реальная и мнимая части описываются с помощью циклических функций. А именно:

  • x = r × cos(ϴ);
  • y = r × sin(ϴ);

Обратно, фаза имеет связь с алгебраическими значениями через формулу:

ϴ = arctan(x / y) + µ, поправка µ вводится для учета периодичности геометрических функций.

Формула Эйлера

Математики часто употребляют показательную форму. Числа комплексной плоскости записывают в виде выражения

z = r × e i × ϴ , которая вытекает из формулы Эйлера.

Такая запись получила широкое распространение для практического вычисления физических величин. Форма представления в виде показательных комплексных чисел особенно удобна для инженерных расчетов, где возникает необходимость рассчитать цепи с синусоидальными токами и необходимо знать значение интегралов функций с заданным периодом. Сами расчеты служат инструментом при конструировании различных машин и механизмов.

Определение операций

Как уже отмечалось, на комплексные числа распространяются все алгебраические законы работы с основными математическими функциями.

Операция суммы

При сложении комплексных значений их реальная и мнимая части также складываются.

z = z 1 + z 2 , где z 1 и z 2 - комплексные числа общего вида. Преобразуя выражение, после раскрытия скобок и упрощения записи, получим реальный аргумент х=(x 1 + x 2), мнимый аргумент y = (y 1 + y 2).

На графике это выглядит как сложение двух векторов, по известному правилу параллелограмма.

Операция вычитания

Рассматривается как частный случай сложения, когда одно число положительное, другое отрицательное, то есть находящееся в зеркальной четверти. Алгебраическая запись выглядит как разность реальных и мнимых частей.

z = z 1 - z 2 , или, учитывая значения аргументов, аналогично операции сложения, получаем для реальных значений х = (x 1 - x 2) и мнимых y = (y 1 - y 2).

Умножение на комплексной плоскости

Используя правила работы с многочленами, выведем формулу для решения комплексных чисел.

Следуя общим алгебраическим правилам z=z 1 ×z 2 , расписываем каждый аргумент и приводим подобные. Реальную и мнимую части можно записать так:

  • х = х 1 × x 2 - y 1 × y 2 ,
  • y = x 1 × y 2 + x 2 × y 1.

Красивее смотрится, если будем использовать показательные комплексные числа.

Выражение выглядит так: z = z 1 × z 2 = r 1 × e i ϴ 1 × r 2 × e i ϴ 2 = r 1 × r 2 × e i(ϴ 1+ ϴ 2) .

Деление

При рассмотрении операции деления, как обратной к операции умножения, в показательной форме записи получаем простое выражение. Деление значения z 1 на z 2 есть результат деления их модулей и разности фаз. Формально, при использовании показательной формы комплексных чисел это выглядит так:

z = z 1 / z 2 = r 1 × e i ϴ 1 / r 2 × e i ϴ 2 = r 1 / r 2 × e i(ϴ 1- ϴ 2) .

В виде алгебраической записи операция деления чисел комплексной плоскости записывается немного сложнее:

Расписывая аргументы и проводя преобразования многочленов, легко получить значения х = x 1 × x 2 + y 1 × y 2 , соответственно y = x 2 × y 1 - x 1 × y 2 , правда, в рамках описываемого пространства это выражение имеет смысл, если z 2 ≠ 0.

Извлекаем корень

Все вышеописанное можно применять при определении более сложных алгебраических функций - возведение в любую степень и обратную к ней - извлечение корня.

Пользуясь общим понятием возведения в степень n, получаем определение:

z n = (r × e i ϴ) n .

Используя общие свойства, перепишем в виде:

z n = r n × e i ϴ n .

Получили простую формулу возведения в степень комплексного числа.

Из определения степени получаем очень важное следствие. Четная степень мнимой единицы всегда равна 1. Любая нечетная степень мнимой единицы всегда равно -1.

Теперь изучим обратную функцию - извлечение корня.

Для простоты записи примем n = 2. Квадратным корнем w комплексного значения z на комплексной плоскости C принято считать выражение z = ±, справедливое для любого вещественного аргумента большего или равного нулю. При w ≤ 0 решения не существует.

Посмотрим на самое простое квадратное уравнение z 2 = 1. Используя формулы комплексных чисел, перепишем r 2 × e i 2ϴ = r 2 × e i 2ϴ = e i 0 . Из записи видно, что r 2 = 1 и ϴ = 0, следовательно, имеем единственное решение, равное 1. Но это противоречит понятию, что z = -1, тоже соответствует определению квадратного корня.

Разберемся, что мы не учитываем. Если вспомним тригонометрическую запись, то восстановим утверждение - при периодическом изменении фазы ϴ комплексное число не меняется. Обозначим символом p значение периода, тогда справедлива запись r 2 × e i 2ϴ = e i (0+ p) , откуда 2ϴ = 0 + p, или ϴ = p / 2. Следовательно, справедливо e i 0 = 1 и e i p /2 = -1. Получили второе решение, что соответствует общему пониманию квадратного корня.

Итак, чтобы найти произвольный корень из комплексного числа, будем действовать по процедуре.

  • Запишем показательную форму w= ∣w∣ × e i (arg (w) + pk) , k - произвольное целое число.
  • Искомое число тоже представим по форме Эйлера z = r × e i ϴ .
  • Воспользуемся общим определением функции извлечения корня r n *e i n ϴ = ∣w∣ × e i (arg (w) + pk) .
  • Из общих свойств равенства модулей и аргументов, запишем r n = ∣w∣ и nϴ = arg (w) + p×k.
  • Итоговая запись корня из комплексного числа описывается формулой z = √∣w∣ × e i (arg (w) + pk) / n .
  • Замечание. Значение ∣w∣, по определению, является положительным вещественным числом, значит, корень любой степени имеет смысл.

Поле и сопряжение

В завершение дадим два важных определения, которые оказывают мало значения для решения прикладных задач с комплексными числами, но существенны при дальнейшем развитии математической теории.

Говорят, что выражения сложения и умножения образуют поле, если удовлетворяют аксиомам для любых элементов комплексной плоскости z:

  1. От перемены мест комплексных слагаемых комплексная сумма не меняется.
  2. Верно утверждение - в сложном выражении любую сумму двух чисел можно заменить на их значение.
  3. Существует нейтральное значение 0, для которого верно z + 0 = 0 + z = z.
  4. Для любого z существует противоположность - z, сложение с которым дает ноль.
  5. При перемене мест комплексных множителей комплексное произведение не меняется.
  6. Умножение двух любых чисел можно заменить на их значение.
  7. Существует нейтральное значение 1, умножение на которое не меняет комплексное число.
  8. Для каждого z ≠ 0, есть обратное значение z -1 , умножение на которое дает в результате 1.
  9. Умножение суммы двух чисел на третье равносильно операции умножение каждого их них на это число и сложение результатов.
  10. 0 ≠ 1.

Числа z 1 = x + i×y и z 2 = x - i×y называются сопряженными.

Теорема. Для сопряжения верно утверждение:

  • Сопряжение суммы равно сумме сопряженных элементов.
  • Сопряжение произведения равно произведению сопряжений.
  • равно самому числу.

В общей алгебре такие свойства принято называть автоморфизмом поля.

Примеры

Следуя приведенным правилам и формулам комплексных чисел, легко можно ими оперировать.

Рассмотрим простейшие примеры.

Задача 1. Используя равенство 3y +5 x i= 15 - 7i, определить x и y.

Решение. Вспомним определение комплексных равенств, тогда 3y = 15, 5x = -7. Следовательно, x = -7 / 5, y = 5.

Задача 2. Вычислить значения 2 + i 28 и 1 + i 135 .

Решение. Очевидно, 28 - четное число, из следствия определения комплексного числа в степени имеем i 28 = 1, значит, выражение 2 + i 28 = 3. Второе значение, i 135 = -1, тогда 1 + i 135 = 0.

Задача 3. Вычислить произведение значений 2 + 5i и 4 + 3i.

Решение. Из общих свойств умножения комплексных чисел получаем (2 + 5i)Х(4 + 3i) = 8 - 15 + i(6 + 20). Новое значение будет -7 + 26i.

Задача 4. Вычислить корни уравнения z 3 = -i.

Решение. Вариантов, как найти комплексное число, может быть несколько. Рассмотрим один из возможных. По определению, ∣ - i∣ = 1, фаза для -i равна -р / 4. Исходное уравнение можем переписать в виде r 3 *e i 3ϴ = e - p/4+ pk , откуда z = e - p / 12 + pk/3 , для любого целого k.

Множество решений имеет вид (e - ip/12 , e ip /4 , e i 2 p/3).

Зачем нужны комплексные числа

История знает множество примеров, когда ученые, работая над теорией, даже не задумываются о практическом применении своих результатов. Математика - это прежде всего игра ума, жесткое следование причинно-следственным связям. Почти все математические построения сводятся к решению интегральных и дифференциальных уравнений, а те, в свою очередь, с некоторым приближением, решаются нахождением корней многочленов. Здесь мы впервые встречаемся с парадоксом мнимых чисел.

Ученые естествоиспытатели, решая совершенно практические задачи, прибегая к решениям различных уравнением, обнаруживают математические парадоксы. Интерпретация этих парадоксов приводит к совершенно удивительным открытиям. Двойственная природа электромагнитных волн один из таких примеров. Комплексные числа в понимании их свойств играют решающую роль.

Это, в свою очередь, нашло практическое применение в оптике, радиоэлектронике, энергетике и многих других технологических сферах. Еще один пример, гораздо более тяжелый для понимания физических явлений. Антиматерия была предсказана на кончике пера. И только через много лет начинаются попытки ее физического синтезирования.

Не надо думать, что только в физике существуют такие ситуации. Не менее интересные открытия совершаются в живой природе, при синтезировании макромолекул, во время изучения искусственного разума. И все это благодаря расширению нашего сознания, уходу от простого сложения и вычитания натуральных величин.

Тема «Комплексные числа» зачастую вызывает затруднения у учащихся, а ведь на самом деле в них нет ничего страшного, как может показаться на первый взгляд.

Итак, сейчас мы разберем и рассмотрим на простых примерах, что такое комплексное число, как обозначается и из чего состоит. Выражение z = a + bi называется комплексным числом. Это единое число, а не сложение.

Пример 1 : z = 6 + 4i

Из чего состоит комплексное число?

Комплексное число имеет действительную и мнимую часть в своем составе.

Число a называется действительной частью комплексного числа и обозначается a = Re (z) . А вот то, что стоит вместе с буквой i - т.е. число b называется коэффициентом мнимой части комплексного числа и обозначается b = Im (z) . Вместе bi образуют мнимую часть комплексного числа.

Нетрудно догадаться и легко запомнить, что сокращение «Re» происходит от слова «Real» - реальная, действительная часть. Соответственно, «Im» является сокращением слова «Imaginary» - мнимая, воображаемая часть.

Пример 2 : z = 0,5 + 9i . Здесь действительная часть a = Re (z) = 0,5 , а мнимая часть b = Im (z) = 9i

Пример 3 : z = -5 + 19i . Здесь действительная часть a = Re (z) = -5 , а мнимая часть b = Im (z) = 19 .

Чисто мнимое комплексное число

Комплексное число, в котором нет действительной части, т.е. Re (z) = 0 , называется чисто мнимым.

Пример 4 : z = 2i . Действительная часть отсутствует, a = Re (z) = 0 , а мнимая часть b = Im (z) = 2 .

Пример 5 . z = -8i . Здесь мнимая часть b = Im (z) = -8 , действительная часть a = Re (z) = 0 .

Сопряженные комплексные числа

Комплексно-сопряженное число обозначается «зэт» с чертой и используется, к примеру, для нахождения частного двух комплексных чисел, проще говоря - для реализации деления чисел. Те, кто сейчас задумался, вам сюда - читать про деление комплексных чисел .

Числа называются комплексно-сопряженными, имеют одинаковые действительные части и различаются лишь знаком мнимых частей. Рассмотрим пример:

Пример 6 . Комплексно сопряженным к числу z = 7 + 13i является число.

Мнимая единица комплексного числа

И наконец поговорим про букву i . Та самая буква, которая образует в комплексном числе мнимую составляющую. Даже если перед нами выражение z = 5 , это просто значит, что мнимая часть данного числа равна нулю, а действительная равна пяти.

Величина i называется мнимой единицей .

Мнимая единица пригодится при решении квадратных уравнений в случае, когда дискриминант меньше нуля. Мы привыкли считать, что если он отрицательный, решения нет, корней нет. Это не совсем корректно. Корни существуют, просто они комплексные. Но об этом позже. А теперь, переходим к следующей статье по изучению комплексных чисел, узнаем же, как посчитать