Информационно развлекательный портал
Поиск по сайту

Белки гистоны отвечают за. Белки, их химический состав, уровни структурной организации. Биологическая роль белков. Понятие о гистоновых и негистоновых белках. Прионовые белки и их медицинское значение. Структура кóровых гистонов

Роль ДНК в составе как интерфазных хромосом (хроматин интерфазного ядра), так и митотических хромосом достаточно ясна: хранение и реализация генетической информации. Однако для выполнения этих функций в составе интерфазных ядер необходимо иметь четкую структурную основу, которая позволила бы расположить огромные по длине молекулы ДНК в строгом порядке, чтобы с определенной временной последовательностью протекали процессы как синтеза РНК, так и редупликации ДНК В интерфазном ядре концентрация ДНК достигает 100 мг/мл (!). В среднем на интерфазное ядро млекопитающих приходится около 2 м ДНК, которая локализуется в сферическом ядре со средним диаметром около 10 мкм. Это значит, что такая огромная масса ДНК должна как-то быть уложена с коэффициентом упаковки 1 х 10 3 --1 х 10 4 . И при этом в ядре должен сохраниться определенный порядок в расположении частично или полностью деконденсированных хромосом. И кроме того, должны быть реализованы условия для упорядоченного функционирования хромосом. Ясно, что все эти требования не могут быть осуществлены в бесструктурной, хаотической системе.

В клеточном ядре ведущую роль в организации расположения ДНК, в ее компактизации и в регулировании функциональных нагрузок принадлежит ядерным белкам. Как уже указывалось, хроматин представляет собой сложный комплекс ДНК с белками, дезоксирибонуклеопротеин (ДНП), где на долю белков приходится около 60% от сухого веса. Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки . На долю гистонов приходится до 80% от всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. Несмотря на преобладание в общем количестве, гистоны представлены небольшим разнообразием белков: эукариотические клетки содержат всего 5-7 типов молекул гистонов. В отличие от гистонов, т.н. негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сот), велико разнообразие функций, которые они выполняют.

Гистоны связаны с ДНК в виде молекулярного комплекса, в виде субъединиц или нуклеосом . До этого считалось, что ДНК равномерно покрыта этими белками, связь которых с ДНК определяется свойствами гистонов.

Гистоны – белки характерные только для хроматина, обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают солевую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК. Эта связь достаточно лабильна, легко нарушается, в этом случае может происходить диссоциация ДНП на ДНК и гистоны. Поэтому хроматин, дезоксирибонуклеопротеин или ще как называли раньше, нуклеогистон, является сложным нуклеиново-белковым комплексом, в который входят линейные высокополимерные молекулы ДНК и огромное множество молекул гистонов (до 60 млн. копий каждого типа гистонов на ядро).

Гистоны – наиболее хорошо биохимически изученные белки (см. табл. 5).

Таблица 5 . Общие свойства гистонов млекопитающих

Гистоны – относительно небольшие по молекулярной массе белки. Эти белки практически у всех эукариот обладают сходными свойствами, обнаруживаются одни и те же классы гистонов. Классы гистонов отличаются друг от друга по содержанию разных основных аминокислот. Так гистоны H3 и H4 относят к аргинин-богатым, из-за относительно высокого содержания в них этой аминокислоты. Эти гистоны являются наиболее консервативными из всех исследованных белков: их аминокислотные последовательности практически одинаковы даже у таких отдаленных видов как корова и горох (всего две аминокислотных замены).

Два других гистона H2A и H2B относятся к умеренно обогащенным лизином белкам. У различных объектов внутри этих групп гистонов обнаруживаются межвидовые вариации в их первичной структуре, в последовательности аминокислот.

Гистон H1, представляет собой не уникальную молекулу, а класс белков, состоящих из нескольких достаточно близкородственных белков с перекрывающимися последовательностями аминокислот. У этих гистонов обнаружены значительные межвидовые и межтканевые вариации. Однако их общим свойством является обогащенность лизином, что делает их самыми основными белками, которые легко отделяются от хроматина в солевых (0,5 М) растворах. В растворах с высокой ионной силой (1-2 М NaCI) все гистоны полностью отделяются от ДНК и переходят в раствор.

Для гистонов всех классов (особенно для H1) характерно кластерное распределение основных аминокислот, лизина и аргинина, на N- и C-концах молекул. Срединные участки молекул гистонов образуют несколько (3-4) -спиральных участка, которые компактизуются в глобулярную структуру в изотонических условиях (рис. 56). По-видимому, богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

У гистона H1 наиболее вариабельным является N-конец, осуществляющий связь с другими гистонами, а C-конец, богатый лизином, взаимодействует с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов может быть обратимым. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК. Так повышенное ацетилирование гистонов предшествует активации генов, а фосфорилирование и дефосфорилирование связаны соответственно с конденсацией и деконденсацией хроматина.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т.е. синтез гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гисонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Подразделение гистоноы на пять групп и достаточное сходство их внутри каждой группы в целом характерно для эукариот. Однако целый ряд отличий в составе гистонов наблюдается как у высших, так и у низших эукариотических организмов. Так у низших позвоночных вместо H1, характерного для всех тканей этих организмов, в эритроцитах находят гистон H5, который содержит больше аргинина и серина. С другой стороны, наблюдается отсутствие некоторых групп гистонов у ряда эукариот, и в целом ряде случаев полная замена этих белков на другие.

Гистоноподобные белки были обнаружены в составе вирусов, бактерий, митохондрий. Так, например, у E. coli в клетке в большом количестве обнаруживаются белки (HU и H-NS), по аминокислотному составу напоминающие гистоны.

Функциональные свойства гистонов

Широкое распространение гистонов, их сходство даже у очень отдаленных видов, обязательность вхождения их в состав хромосом, все это говорит об их чрезвычайно важной роли в процессе жизнедеятельности клеток. Еще до открытия нуклеосом существовало две взаимодополняющие друг друга группы гипотез о функциональной роли гистонов, о регуляторной и структурной их роли.

Было обнаружено, что выделенный хроматин при добавлении к нему РНК-полимеразы может быть матрицей для транскрипции, однако активность его составляет всего лишь около 10% от активности, соответствующей активности выделенной чистой ДНК. Эта активность прогрессивно возрастает по мере удаления групп гистонов и может достичь 100% при полном удалении гистонов. Отсюда можно было сделать вывод, что общее содержание гистонов может регулировать уровень транскрипции. Это наблюдение совпадает с тем, что по мере удаления гистонов, особенно H1, происходит прогрессивная деконденсация, разворачивание фибрилл ДНП, что возможно облегчает взаимодействие РНК-полимеразы с матричной ДНК. Так же было обнаружено, что модификация гистонов приводит к усилению транскрипции и одновременной декомпактизации хроматина. Следовательно, напрашивается вывод о том, что количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина. Однако оставался открытым вопрос о специфичности регуляторных свойств гистонов: какова роль гистонов при синтезе специфических иРНК в различно дифференцированных клетках. Этот вопрос до сих пор еще не решен, хотя можно сделать некоторые обобщения: на эту роль могут претендовать те группы гистонов, которые наименее консервативны, такие как H1 или как H2A и H2B, которые могут в значительной мере модифицироваться и тем самым изменять свои свойства в определенных участках генома.

Была очевидна и структурная, компактизирующая, роль гистонов в организации хроматина. Так постепенное добавление фракции гистонов к растворам чистой ДНК приводит к выпадению в осадок комплекса ДНП, и наоборот, частичное удаление гистонов из препаратов хроматина, ведет к его переходу в растворимое состояние. С другой стороны, в цитоплазматических экстрактах ооцитов земноводных или яиц морских ежей, содержащих свободные гистоны, добавление любой ДНК (включая фаговую) привводит к образованию хроматиновых фибрилл (ДНП), длина которых в несколько раз короче исходных ДНК. Эти данные говорят о структурной, компактизирующей роли гистонов. Для того, чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть как-то скручена, компактизована с плотностью упаковки равной 1: 10000. Оказалось, что в процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК.

Первый уровень компактизации ДНК: структурная роль нуклеосом

В ранних биохимических и электронномикроскопических работах было показано, что препараты ДНП содержат нитчатые структуры с диаметром от 5 до 50 нм. Постепенно стало ясно, что диаметр фибрилл хроматина зависит от способа выделения препарата.

На ультратонких срезах интерфазных ядер и митотических хромосом после фиксации глутаровым альдегидом обнаруживались хроматированные фибриллы толщиной 30 нм. Такие же размеры имели фибриллы хроматина при физической фиксации ядер - при быстром замораживании ядер, скалывании объекта и получении реплик с таких препаратов. В последнем случае исключалось воздействие на хроматин переменных химических условий. Но все эти методы и приемы не давали никакой информации о характере локализации ДНК и гистонов в хроматиновых фибриллах.

Крупным событием в изучении хроматина было открытие двумя разными способами нуклеосом - дискретных частиц хроматина. Так при осаждении на подложку для электронной микроскопии препаратов хроматина в щелочных условиях при низкой ионной силе, можно было видеть, что нити хроматина представляли собой что-то, напоминающее “бусы на нитке”: небольшие, около 10 нм, глобулы, связанные друг с другом отрезками ДНК длиной около 20 нм (рис. 57, 58). Эти наблюдения совпадали с результатами фракционирования хроматина после частичного нуклеазного переваривания.

Было найдено, что если подвергнуть действию нуклеазы микрококков выделенный хроматин, то он подвергается распаду на регулярно повторяющиеся структуры. Так ДНК, полученная из хроматина, обработанного нуклеазой, состояла из серии отрезков, кратных 200 парам оснований; встречались отрезки в 200, 400, 600, 800 и больше пар нуклеотидов (п.н.). Это говорит о том, что нуклеазной атаке в составе хроматина подвергаются участки ДНК, расположенные примерно через каждые 200 п.н. При этом в кислоторастворимую фракцию (низкополимерная) ДНК уходит всего 2% ядерной ДНК. Кроме того после такой нуклеазной обработки из хроматина путем центрифугирования удается выделить фракцию частиц со скоростью седиментации 11S (S - единица Сведберга, определяющая скорость седиментации частиц, равна 1 х 10 -13 с), а также частицы кратного этой величине размера: димеры, тримеры, тетрамеры и т.д. Оказалось, что частицы 11S содержат ДНК около 200 п.н. и восемь гистонов (октамер ) по две копии гистонов H2A, H2B, H3 и H4 и одну копию гистона H1. Такая сложная нуклеопротеидная частица получила название нуклеосомы . Более подробный анализ этой фракции показал, что нуклеосома устроена следующим образом: октамер гистонов образует белковую основу-сердцевину (от англ. core, часто в нашей литературе этот термин используется без перевода: кор, коровая частица), по поверхности которой располагается ДНК величиной в 146 п.н., образующая 1,75 оборота; остальные 54 п.н. ДНК образуют участок, несвязанный с белками сердцевины - линкер , который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Гистон H1 связывается частично с основной, сердцевиной и с участком линкера (около 30 п.н.). Следовательно, полная нуклеосома содержит около 200 п.н. ДНК (146 п.н.- сердцевина, 30 п.н. - участок линкера в комплексе с гистоном H1, 30 п.н. - свободная ДНК), октамер сердцевинных (коровых) гистонов и одну молекулу гистона H1 (рис. 59). Молекулярная масса полной нуклеосомы - 262000 Да. Рассчитано, что на весь гаплоидный геном человека (3 х 10 9 пар оснований) приходится 1,5 х 10 7 нуклеосом.

Сердцевина или коровая частица (или минимальная нуклеосома) очень консервативны по своей структуре: они всегда содержат 146 п.н. ДНК и октамер гистонов. Линкерный участок может значительно варьировать (от 8 до 114 п.н. на нуклеосому).

Используя метод рассеяния нейтронов удалось установить форму и точные размеры нуклеосом. При грубом приближении – это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования они образуют «бусины», глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, как считают, имеет форму, напоминающую мяч для игры в рэгби, в состав которого входит тетрамер (H3  H4) 2 и два независимых димера H2A  H2B. На рис. 60 представлена схема расположения гистонов в сердцевинной части нуклеосомы.

В фибриллах хроматина линкерный участок не линеен, а продолжая спираль ДНК на поверхности нуклеосомной частицы,связывает соседние нуклеосомы так, что образуется как бы сплошная нить, толщиной около 10 нм, состоящая из тесно расположенных нуклеосом (рис. 61). При этом за счет дополнительной спирализации ДНК (1 отрицательный супервиток ДНК на 1 нуклеосому) происходит первичная компактизация ДНК, с плотностью упаковки равной 6-7 (200 п.н. длиной 68 нм, уложены в глобулу диаметром 10 нм). Укладка почти двух витков ДНК по периферии сердцевин нуклеосомы происходит, как считается, за счет взаимодействия положительно заряженных аминокислотных остатков на поверхности октамера гистонов с фосфатами ДНК. N- и C-концевые участки сердцевинных гистонов, обогащенные положительными зарядами, вероятно, служат для дополнительной стабилизации структуры нуклеосомы.

Ведущая роль сердцевинных (коровых) белков в компактизации ДНК показана при самосборке нуклеосом. Регулируя последовательность добавления гистонов и ДНК, удалось получить полную реконструкцию нуклеосом. В этом процессе не играет никакой роли источник, откуда была взята ДНК: это может быть ДНК бактерии и даже циклическая ДНК вирусов. Оказалось, что для образования нуклеосом гистон H1 не требуется, он участвует в связывании уже готовых нуклеосом друг с другом и в образовании более высоких уровней компактизации ДНК. Ключевыми в построении нуклеосом оказались гистоны H3 и H4. При этом вначале ДНК связывается с тетрамером (H3  H4) 2 к которому позжеприсоединяются два димера H2A  H2B. Вероятно, высокая консервативность в строении гистонов H3 и H4 отражает их ведущую структурную роль на первых этапах компактизации ДНК при образовании нуклеосом.

В этих белках является консервативной и практически не различается в организмах различных таксонов . Гистоны присутствуют в ядрах эукариотических клеток; у бактерий гистонов нет, но они выявлены у архей группы Euryarchaea .

Гистоны обнаружены в 1884 году немецким биохимиком Альбрехтом Косселем .

Энциклопедичный YouTube

    1 / 4

    ✪ Хромосомы, хроматиды, хроматин и т.п.

    ✪ Эпигеномика, РНК и все такое - Андрей Миронов

    ✪ Systemic lupus erythematosus (SLE) - causes, symptoms, diagnosis & pathology

    ✪ Фазы мейоза

    Субтитры

    Перед погружением в механизм деления клеток, я думаю, будет полезно поговорить о лексике, связанной с ДНК. Есть много слов, и некоторые из них сходны по звучанию друг с другом. Они могут сбивать с толку. Для начала я бы хотел поговорить о том, как ДНК генерирует больше ДНК, создаёт свои копии, или о том, как она вообще делает белки. Мы уже говорили об этом в ролике о ДНК. Давайте я нарисую небольшой участок ДНК. У меня есть A, Г, T, пусть у меня Есть два Т и потом два Ц. Такой небольшой участок. Он продолжается вот так. Конечно, это двойная спираль. Каждой букве соответствует своя. Я нарисую их этим цветом. Итак, A соответствует T, Г соответствует Ц, (точнее Г образует водородные связи с Ц), T - с A, T - с A, Ц - с Г, Ц - с Г. Вся эта спираль тянется, допустим, в этом направлении. Итак, есть пара различных процессов, которые эта ДНК должна осуществить. Один из них связан с клетками вашего тела - необходимо произвести больше клеток вашей кожи. Ваша ДНК должна скопировать себя. Этот процесс называется репликацией. Вы реплицируете ДНК. Я покажу вам репликацию. Как эта ДНК может скопировать себя? Это одна из самых замечательных особенностей структуры ДНК. Репликация. Я делаю общее упрощение, но идея заключается в том, что две цепи ДНК разделяются, и это происходит не само по себе. Этому способствует масса белков и ферментов, но в деталях я буду рассказывать о микробиологии в другом ролике. Итак, эти цепи отделяются друг от друга. Я перенесу цепь сюда. Они отделяются друг от друга. Я возьму другую цепь. Эта слишком большая. Эта цепь будет выглядеть как-то так. Они отделяются друг от друга. Что же может произойти после этого? Я удалю лишние фрагменты здесь и здесь. Итак, вот наша двойная спираль. Они все были связаны. Это пары оснований. Теперь они отделяются друг от друга. Что может делать каждая из них после разделения? Они теперь могут стать матрицей друг для друга. Смотрите… Если эта цепь находится сама по себе, сейчас, неожиданно может прийти тиминовое основание и присоединится здесь, и эти нуклеотиды начнут выстраиваться в линию. Тимин и цитозин, и потом аденин, аденин, гуанин, гуанин. И так продолжаться. И тогда, в этой другой части, на зелёной цепи, которая была до этого прикреплена к этой голубой, будет происходить то же самое. Будет аденин, гуанин, тимин, тимин, цитозин, цитозин. Что произошло только что? Разделением и привлечением комплементарных оснований, мы создали копию этой молекулы. Мы займёмся микробиологией этого в будущем, это только для общего представления о том, как ДНК копирует себя. Особенно, когда мы рассматриваем митоз и мейоз, я могу сказать: «Это стадия, где происходит репликация». Теперь, другой процесс, о котором вы ещё много услышите. Я говорил о нём в ролике о ДНК. Это транскрипция. В ролике о ДНК я не уделял много внимания тому, как ДНК удваивает сама себя, но одна из великолепных особенностей устройства двойной цепи - это лёгкая возможность самоудвоения. Вы просто разделяете 2 полоски, 2 спирали, а потом они становятся матрицей для другой цепи, и тогда появляется копия. Теперь транскрипция. Это то, что должно произойти с ДНК для того, чтобы образовались белки, но транскрипция - это промежуточная стадия. Это стадия, когда вы переходите от ДНК к мРНК. Тогда эта мРНК покидает ядро клетки и направляется к рибосомам. Я буду говорить об этом через несколько секунд. Итак, мы можем сделать то же самое. Эти цепи опять в ходе транскрипции разделяются. Одна отделяется сюда, а другая отделяется... а другая будет отделятся вот сюда. Прекрасно. Может быть имеет смысл использовать только одну половину цепи - я удалю одну. Вот таким образом. Мы собираемся транскрибировать зелёную часть. Вот она. Всё это я удалю. Не тот цвет. Итак, я удаляю всё это. Что произойдёт, если вместо нуклеотидов дезоксирибонуклеиновой кислоты, которые образуют пары с этой цепью ДНК, у вас есть рибонуклеиновая кислота, или РНК, образующая пары. Изображу РНК пурпурным цветом. РНК будет образовывать пары с ДНК. Тимин, находящийся в ДНК, будет образовывать пару с аденином. Гуанин, теперь, когда мы говорим о РНК, вместо тимина у нас будет урацил, урацил, цитозин, цитозин. И это будет продолжаться. Это мРНК. Информационная РНК. Теперь она отделяется. Эта мРНК отделяется и покидает ядро. Она покидает ядро, и тогда происходит трансляция. Трансляция. Запишем этот термин. Трансляция. Это идёт от мРНК... В ролике о ДНК у меня была маленькая тРНК. Транспортная РНК была как бы грузовиком, перевозящим аминокислоты к мРНК. Всё это происходит в части клетки, называемой рибосомой. Трансляция происходит от мРНК к белку. Мы видели, как это происходит. Итак, от мРНК к белку. У вас есть эта цепь - я сделаю копию. Скопирую всю цепь сразу. Эта цепь отделяется, покидает ядро, и тогда у вас есть эти маленькие грузовики тРНК, которые, собственно, и, так сказать, подъезжают. Итак, допустим, у меня есть тРНК. Давайте посмотрим, аденин, аденин, гуанин и гуанин. Это РНК. Это кодон. Кодон имеет 3 пары оснований и прикреплённую к нему аминокислоту. У вас есть некоторые другие части тРНК. Скажем, урацил, цитозин, аденин. И прикреплённая к нему другая аминокислота. Тогда аминокислоты соединяются и образуют длинную цепь аминокислот, которая является белком. Белки образуют эти странные сложные формы. Чтобы убедиться, что вы поняли. Мы начнём с ДНК. Если мы производим копии ДНК - это репликация. Вы реплицируете ДНК. Итак, если мы производим копии ДНК - это репликация. Если вы начинаете с ДНК и создаёте мРНК с матрицы ДНК, то это транскрипция. Запишем. "Транскрипция" . То есть вы транскрибируете информацию с одной формы на другую - транскрипция. Теперь, когда мРНК покидает ядро клетки… Я нарисую клетку, чтобы обратить на это внимание. Мы займёмся структурой клетки в будущем. Если это целая клетка, ядро - это центр. Это место, где находятся все ДНК, все репликации и транскрипции происходят здесь. Затем мРНК покидает ядро, и тогда в рибосомах, которые мы более подробно обсудим в будущем, происходит трансляция и формируется белок. Итак, от мРНК к белку - это трансляция. Вы транслируете с генетического кода, в так называемый белковый код. Итак, это и есть трансляция. Это именно те слова, которые обычно используются для описания этих процессов. Убедитесь, что вы правильно их используете, называя различные процессы. Теперь другая часть терминологии ДНК. Когда я впервые встретился с ней, я решил, что она чрезвычайно сбивает с толку. Это слово «хромосома». Запишу слова здесь - вы сами можете оценить, как они сбивают с толку: хромосома, хроматин и хроматида. Хроматида. Итак, хромосома, мы уже говорили о ней. У вас может быть цепь ДНК. Это двойная спираль. Эта цепь, если я увеличу её, - на самом деле две разных цепи. Они имеют соединённые пары оснований. Я только что нарисовал пары оснований, соединённые вместе. Я хочу, чтобы было ясно: я нарисовал эту небольшую зелёную линию здесь. Это двойная спираль. Она оборачивается вокруг белков, которые называются гистонами. Гистоны. Пусть она оборачивается вот так и как-то так, а потом как-нибудь так. Здесь у вас есть вещества, называемые гистонами, которые являются белками. Нарисуем их вот таким образом. Вот так. Это структура, то есть ДНК в комбинации с белками, которые её структурируют, заставляя оборачиваться вокруг дальше и дальше. В конечном счёте, в зависимости от стадии жизни клетки, будут образовываться различные структуры. И когда вы говорите о нуклеиновой кислоте, которая является ДНК, и объединяете её с белками, то вы говорите о хроматине. Значит, хроматин - это ДНК плюс структурные белки, которые придают ДНК форму. Структурные белки. Идея хроматина была впервые использована из-за того, что люди видели, когда смотрели на клетку… Помните? Каждый раз я рисовал клеточное ядро определённым образом. Скажем, так. Это ядро клетки. Я рисовал очень хорошо различимые структуры. Это одна, это другая. Может быть, она короче, и у неё есть гомологичная хромосома. Я нарисовал хромосомы, так? И каждая из этих хромосом, как я уже показывал в прошлом видео, - по существу - длинные структуры ДНК, длинные цепи ДНК, плотно обёрнутые друг вокруг друга. Я рисовал это как-то так. Если мы увеличим, то увидим одну цепь, и она действительно обёрнута вокруг себя подобно этому. Это её гомологичная хромосома. Вспомните, в ролике, посвящённом изменчивости, я говорил о гомологичной хромосоме, которая кодирует те же гены, но другую их версию. Синий - от папы, а красный - от мамы, но они по существу кодируют те же гены. Итак, это одна цепь, которую я получил от папы с ДНК этой структуры, мы называем её хромосомой. Итак, хромосома. Я хочу, чтобы это было ясно, ДНК принимает эту форму только на определённых жизненных стадиях, когда она воспроизводит сама себя, т.е. реплицируется. Точнее не так… Когда клетка делится. Перед тем как клетка становится способной к делению, ДНК принимает эту хорошо определённую форму. Большую часть жизни клетки, когда ДНК делает свою работу, когда она создаёт белки, то есть белки транскрибируются и транслируются с ДНК, она не сворачивается таким образом. Если бы она была свёрнута, для репликационной и транскрипционной системы было бы затруднительно проникнуть к ДНК, произвести белки и делать что-то ещё. Обычно ДНК… Давайте я ещё раз нарисую ядро. Чаще всего вы даже не можете увидеть её в обычный световой микроскоп. Она настолько тонкая, что вся спираль ДНК полностью распределена в ядре. Я рисую это здесь, другая может быть здесь. А потом у вас есть более короткая цепь, типа этой. Вы даже не можете её увидеть. Она не находится в этой, хорошо определённой структуре. Обычно это выглядит таким образом. Пусть будет ещё такая короткая цепь. Вы можете увидеть только подобный беспорядок, состоящий из путаницы комбинаций ДНК и белков. Это то, что люди в общем-то и называют хроматином. Это нужно записать. "Хроматин" Таким образом, слова могут быть очень неоднозначны и очень запутанны, но общее использование, когда вы говорите о хорошо определённой одной цепи ДНК, вот таким образом хорошо определённой структуры, то это хромосома. Понятие "хроматин" может относиться либо к структуре типа хромосомы, комбинации ДНК и белков, структурирующих ее, либо к беспорядку множества хромосом, в которых есть ДНК. То есть из множества хромосом и белков, перемешанных вместе. Я хочу, чтобы это было понятно. Теперь следующее слово. Что такое хроматида? На всякий случай, если я ещё не сделал этого… Я не помню, помечал ли я это. Эти белки, которые обеспечивают структуру хроматина или составляют хроматин, а также обеспечивают структуру называются "гистонами". Есть различные типы, которые обеспечивают структуру на различных уровнях, мы ещё рассмотрим их детально. Итак, что такое хроматида? Когда ДНК реплицируется… Скажем, это была моя ДНК, она находится в нормальном состоянии. Одна версия - от папы, одна версия - от мамы. Теперь она реплицируется. Версия от папы сначала выглядит так. Это большая цепь ДНК. Она создаёт другую версию себя, идентичную, если система работает правильно, и эта идентичная часть выглядит так. Они изначально прикреплены друг к другу. Они прикреплены друг к другу в месте, называемом центромерой. Теперь, несмотря на то что у меня здесь 2 цепи, скрепленные вместе. Две одинаковые цепи. Одна цепь здесь, одна тут… Хотя давайте я изображу иначе. В принципе это можно изобразить множеством разных способов. Это одна цепь здесь, и вот другая цепь тут. То есть у нас имеются 2 копии. Они кодируют абсолютно одинаковую ДНК. Так вот. Они идентичны, поэтому я всё ещё называю это хромосомой. Запишем это тоже. Всё это вместе называется хромосомой, но теперь каждая отдельная копия называется хроматидой. Итак, это одна хроматида и это другая. Иногда их называют сестринскими хроматидами. Также их можно назвать хроматидами-близнецами, потому что у них одна и та же генетическая информация. Итак, эта хромосома имеет 2 хроматиды. Теперь перед репликацией или перед удвоением ДНК вы можете сказать, что эта хромосома вот здесь имеет одну хроматиду. Вы можете называть это хроматидой, но это не обязательно. Люди начинают говорить о хроматидах тогда, когда две из них присутствуют в хромосоме. Мы узнаем, что в митозе и мейозе эти 2 хроматиды разделяются. Когда они разделяются, тут же цепь ДНК, которую вы однажды называли хроматидой, теперь вы будете называть отдельной хромосомой. Итак, это одна из них, и вот другая, которая могла отделиться в этом направлении. Обведу эту зелёным. Итак, эта может отойти в эту сторону, а эта, которую я обвёл оранжевым, например, в эту … Теперь, когда они отделены и больше не связаны центромерой, то, что мы изначально называли одной хромосомой с двумя хроматидами, теперь вы называете двумя отдельными хромосомами. Или можно сказать, что теперь у вас есть две отдельные хромосомы, каждая из которых состоит из одной хроматиды. Я надеюсь, что это немного проясняет значение терминов, связанных с ДНК. Я всегда находил их довольно запутанными, но они будут полезным инструментом, когда мы начнём митоз и мейоз и я буду говорить о том, что хромосома становится хроматидой. Вы будете спрашивать, как одна хромосома стала двумя хромосомами, и как хроматида стала хромосомой. Всё это вращается вокруг лексики. Я бы выбрал другую, вместо того чтобы называть это хромосомой и каждую из этих отдельными хромосомами, но так решили называть за нас. Возможно, вам интересно узнать, откуда это слово - «хромо». Может быть, вы знаете старую плёнку «Кодак», которая называлась «хромо цвет». В принципе «хромо» означает «цвет». Я думаю, оно происходит от греческого слова «цвет». Когда люди первый раз стали рассматривать ядро клетки, они использовали краситель, и то, что мы называем хромосомами, окрашивалось красителем. И мы могли видеть это в световой микроскоп. Часть «сома» происходит от слова «сома», обозначающего «тело», то есть мы получаем окрашенное тело. Так появилось слово «хромосома». Хроматин также окрашивается… Надеюсь, это немного проясняет понятия «хроматида», «хромосома», «хроматин», и теперь мы подготовлены к изучению митоза и мейоза.

Структура нуклеосомы и гистоновых белков

По две молекулы каждого из гистонов Н2А, Н2В, Н3 и Н4 составляют октамер, обвитый сегментом ДНК длиной 146 пар оснований (п.о.), образующим 1,8 витка спирали поверх белковой структуры. Эта частица диаметром 7 нм называется нуклеосомой . Участок ДНК, соединяющий соседние нуклеосомы и непосредственно не контактирующий с гистоновым октамером, взаимодействует с линкерным гистоном Н1. Длина фрагмента ДНК, приходящегося на одну нуклеосому, варьирует и составляет в среднем 200 п.о. При этом непосредственно с нуклеосомой связаны 146 п.о., а остальные несколько десятков соединяют две соседние нуклеосомы .

ДНК и нуклеосомные гистоны прочно соединены: в каждой нуклеосоме между ДНК и гистонами, входящими в её состав, образуется 142 водородные связи . Почти половина этих связей возникает между основной цепью аминокислот гистонов и фосфодиэфирными группами сахарнофосфатного остова ДНК. Помимо водородных связей ДНК с белками нуклеосомы скрепляют многочисленные гидрофобные взаимодействия и солевые мостики. Например, положительные заряды аминокислот лизина и аргинина, которыми обогащены гистоны, могут эффективно нейтрализовать отрицательный заряд остова ДНК. Эти многочисленные взаимодействия отчасти объясняют, почему ДНК практически любой последовательности может быть связана с нуклеосомным октамером .

Структура кóровых гистонов

Кóровые гистоны Н2А, Н2В, Н3 и Н4 являются небольшими белками с молекулярными массами 10 - 15 кДа, состав которых чрезвычайно обогащён положительно заряженными аминокислотами лизином и аргинином . Положительно заряженные аминокислоты сосредоточены в основном в аминных (N-) и карбоксильных (C-) (см. Пептидная связь) концевых частях молекул коровых гистонов, называемых хвостами. Гистоновые хвосты длиной около 15 - 30 аминокислотных остатков не организованы в какие-либо выраженные вторичные структуры. Гистоновые хвосты, прежде всего N-хвост, играют ключевую роль в эпигенетических механизмах, в которых участвуют эти белки. В центральных, самых консервативных, участках полипептидной цепи кóровых гистонов преобладают остатки гидрофобных аминокислот. Именно эти центральные области участвуют в образовании нуклеосомного октамера, на который навивается ДНК . Центральная область всех нуклеосомных гистонов имеет характерную вторичную структуру с протяжённым α-спиральным доменом, который с обеих сторон фланкируется доменами, содержащими по одной петле и по одной короткой α-спирали. Эта пространственная структура называется гистоновой складкой (англ. histone fold domain , HFD) . Таким образом, нуклеосомные гистоны содержат центральный структурированный трехспиральный HFD-домен и неструктурированные N- и C-хвосты.

Гистоны H3 и H4, Н2А и H2B попарно узнают друг друга. Спиральные домены взаимодействуют между собой, образуя структуры, названные рукопожатием, в результате чего возникают гетеродимеры - Н3-Н4 и Н2А-Н2В. Из первого димера, в свою очередь, образуется тетрамер (Н3-Н4) 2 . Тетрамер (Н3-Н4) 2 и два димера Н2А-Н2В составляют гистоновый октамер, сердцевину нуклеосомы . Нуклеосома имеет клиновидную форму. Её узкую часть составляет (Н3-Н4) 2 , а широкая часть состоит из двух димеров Н2А-Н2В, которые расположены по бокам тетрамера (Н3-Н4) 2 и не взаимодействуют друг с другом. Из всей ДНК, что намотана на нуклеосомный октамер, примерно 80 пар оснований связаны с тетрамером (Н3-Н4) 2 и около 40 пар с димерами Н2А-Н2В .

Структура линкерного гистона H1/Н5

С внешней стороной нуклеосомы в районе тетрамера (Н3-Н4) 2 связывается линкерный гистон H1, фиксирующий тем самым на нуклеосоме нить ДНК. В эритроцитах птиц и рептилий в неактивном хроматине вместо гистона Н1 присутствует близкородственный гистон Н5 . Гистон Н1/Н5 существенно отличается от четырёх коровых гистонов. Он имеет молекулярную массу более 20 кДа. В его составе значительно больше остатков лизина, чем аргинина, причём все положительно заряженные аминокислотные остатки сконцентрированы на С-конце молекулы Н1. С-конец молекулы Н1 характеризуется неупорядоченной структурой и имеет длину около 100 аминокислотных остатков. Центральная часть молекулы Н1 богата гидрофобными аминокислотными остатками и в растворе образует глобулу. N-конец не имеет упорядоченной структуры и является относительно коротким .

Варианты гистонов

Каждый тип гистонов, кроме гистона H4, представляет собой группу, состоящую из канонических гистонов и гистоновых вариантов.

Роль гистоновых вариантов состоит в том, чтобы сохраняя нуклеосомную укладку хроматина, увеличивать или уменьшать её устойчивость, создавать особый контекст в каждом конкретном участке хроматина и тем самым управлять процессами транскрипции, репликации и репарации .

Гены гистонов

Характерной чертой генов канонических гистонов является отсутствие интронов . Транскрипция этих генов происходит строго во время S-фазы клеточного цикла . Матричная РНК этих генов не полиаденилируется, 3"-некодирующая часть мРНК уложена во вторичную структуру типа «стебель-петля» .

В противоположность генам канонических гистонов гены вариантных гистонов не образуют кластеров, они разбросаны по всему геному, нередко содержат интроны, транскрибируемая с них РНК полиаденируется, транскрипция происходит во время всего клеточного цикла.

Таблица. Гены гистонов у человека
Суперсемейство Семейство Подсемейство Гены
Линкерный гистон
Гистон Н1
Вариантные гистоны H1 (подсемейство H1F) H1F0, H1FNT, H1FOO, H1FX, HILS1
Гены канонического гистона H1 в кластере HIST1 (H1H1) HIST1H1A, HIST1H1B, HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T
Коровые гистоны
Гистон H2A
Вариантные гистоны H2A (H2AF) H2AFB1, H2AFB2, H2AFB3, H2AFJ, H2AFV, H2AFX, H2AFY, H2AFY2, H2AFZ
Гены канонического гистона H2A в кластере HIST1 (H2A1) HIST1H2AA, HIST1H2AB, HIST1H2AC, HIST1H2AD, HIST1H2AE, HIST1H2AG, HIST1H2AI, HIST1H2AJ, HIST1H2AK, HIST1H2AL, HIST1H2AM
Гены канонического гистона H2A в кластере HIST2 (H2A2) HIST2H2AA3, HIST2H2AC
Гистон H2B
Вариантные гистоны H2B (H2BF) H2BFM, H2BFS, H2BFWT
Гены канонического гистона H2B в кластере HIST1 (H2B1) HIST1H2BA, HIST1H2BB, HIST1H2BC, HIST1H2BD, HIST1H2BE, HIST1H2BF, HIST1H2BG, HIST1H2BH, HIST1H2BI, HIST1H2BJ, HIST1H2BK, HIST1H2BL, HIST1H2BM, HIST1H2BN, HIST1H2BO
Ген канонического гистона H2A в кластере HIST2 (H2B2) HIST2H2BE
Гистон H3
Гены канонического гистона H3 в кластере HIST1 (H3A1) HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3D, HIST1H3E, HIST1H3F, HIST1H3G, HIST1H3H, HIST1H3I, HIST1H3J
Гены канонического гистона H3 в кластере HIST2 (H3A2) HIST2H3C
Гены канонического гистона H3 в кластере HIST3 (H3A3) HIST3H3
Гистон H4
Гены канонического гистона H4 в кластере HIST1 (H41) HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, HIST1H4F, HIST1H4G, HIST1H4H, HIST1H4I, HIST1H4J, HIST1H4K, HIST1H4L
Ген канонического гистона H4 вне кластеров HIST4H4

Модификации гистонов

Гистоны в октамере имеют подвижный N-концевой фрагмент («хвост») из 20 аминокислот, который выступает из нуклеосом и важен для поддержания структуры хроматина и контроля за генной экспрессией. Так, например, некоторые модификации гистонов (фосфорилирование и ацетилирование), как известно, локализованы преимущественно на участках хроматина с активными генами , тогда как их деацетилирование и метилирование репрессорным комплексом поликомб играют важную роль в поддержании плюрипотентности и дифференцировке .

Детали механизма регуляции до конца не выяснены.

Консервативность гистонов

Последовательность аминокислот гистонов, то есть их первичная структура, мало изменилась в процессе эволюции. Это хорошо видно при сравнении аминокислотной последовательности гистонов млекопитающих, растений и дрожжей. Так, Н4 человека и пшеницы отличаются лишь несколькими аминокислотами. К тому же размер молекулы белка и её полярность довольно постоянны. Из этого можно заключить, что гистоны были оптимизированы ещё в эпоху общего предшественника животных, растений и грибов (более 700 млн лет назад). Хотя с тех пор в гистоновых генах происходили бесчисленные точечные мутации , все они, очевидно, приводили к вымиранию мутантных организмов.

См. также

Примечания

  1. Биологический энциклопедический словарь / Гл.ред. М.С.Гиляров. - М. : Сов. энциклопедия, 1986. - 831 с.

Ядерных белков , необходимых для сборки и упаковки нитей в хромосомы . Существует пять различных типов гистонов, названных H1/Н5, H2A, H2B, H3, H4. Последовательность аминокислот в этих белках практически не различается в организмах различного уровня организации. Гистоны - небольшие, сильно основные белки, связывающиеся непосредственно с ДНК. Гистоны принимают участие в структурной организации хроматина , нейтрализуя за счёт положительных зарядов аминокислотных остатков отрицательно заряженные фосфатные группы ДНК, что делает возможной плотную упаковку ДНК в ядре.

Благодаря этому 46 молекул ДНК диплоидного генома человека общей длиной около 2 м, содержащих в сумме 6·10 9 пар оснований (п.о.), могут поместиться в клеточном ядре диаметром всего 10 мкм.

По две молекулы каждого из гистонов Н2А, Н2В, Н3 и Н4 составляют октамер, обвитый сегментом ДНК длиной 146 п.о., образующим 1,8 витка спирали поверх белковой структуры. Эта частица диаметром 7 нм называется нуклеосомой . Участок ДНК (линкерная ДНК), непосредственно не контактирующий с гистоновым октамером, взаимодействует с гистоном Н1.

Группа негистоновых белков высоко гетерогенна и включает структурные ядерные белки, множество ферментов и факторов транскрипции, связанных с определёнными участками ДНК и осуществляющих регуляцию генной экспрессии и других процессов.

Гистоновые белки интересны со многих точек зрения. Благодаря высокому содержанию лизина и аргинина они, как уже упоминалось, проявляют сильно основные свойства. Кроме того, последовательность аминокислот гистонов, то есть их первичная структура, мало изменилась в процессе эволюции. Это хорошо видно при сравнении аминокислотной последовательности гистонов млекопитающих, растений и дрожжей. Так, Н4 человека и пшеницы отличаются лишь несколькими аминокислотами. К тому же размер молекулы белка и её полярность довольно постоянны. Из этого можно заключить, что гистоны были оптимизированы ещё в эпоху общего предшественника животных, растений и грибов (более 700 млн лет назад). Хотя с тех пор в гистоновых генах происходили бесчисленные точковые мутации, все они, очевидно, приводили к вымиранию мутантных организмов.

Гистоны в октамере имеют подвижный N-концевой фрагмент («хвост») из 20 аминокислот, который выступает из нуклеосом и важен для поддержания структуры хроматина и контроля за генной экспрессией. Так, например, формирование (конденсация) хромосом связано с фосфорилированием гистонов, а усиление транскрипции - с ацетилированием в них остатков лизина. Детали механизма регуляции до конца не выяснены.

Некоторые детали механизма регуляции смотри : Белки группы polycomb


Wikimedia Foundation . 2010 .

Белки - непериодические полимеры, мономерами которых являются аминокислоты.Все белки представляют собой полимеры, состоящие из длинных цепей субъединиц, соединенных вместе в линейную структуру. Субъединицы - это 20 разных аминокислот.Общим признаком для всех аминокислот является наличие в их составе карбоксильной и аминогрупп, соединенных атомом углерода. Кроме этих общих атомов, каждая аминокислота содержит свои особые боковые цепи, присоединенные к центральному атому углерода. Таким образом, хотя все аминокислоты принадлежат к одному классу соединений и имеют некоторые общие химические свойства, отдельные аминокислоты резко отличаются друг от друга.

Уровни структурной организации

В строении молекул белков различают 4 уровня организации:

· Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными пептидными связями;

· Вторичная структура - полипептидная цепь в виде спирали. Между пептидными связями соседних витков и другими атомами возникают многочисленные водородные связи, обеспечивающие прочную структуру;

· Третичная структура - специфическая для каждого белка конфигурация - глобула. Удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот.

· Четвертичная структура возникает при соединении нескольких макромолекул, образующих агрегаты. Так, гемоглобин крови человека представляет агрегат из четырех макромолекул.

Нарушение природной структуры белка называют денатурацией. Она возникает под воздействием высокой температуры, химических веществ, лучистой энергии и др. факторов.

Биологическая роль белков

· Строительная (структурная) функция: белки - строительный материал организма (оболочки, мембраны, органоиды, ткани, органы);

· Каталитическая функция - ферменты, ускоряющие реакции в сотни миллионов раз;

· Опорно-двигательная функция - белки, входящие в состав костей скелета, сухожилий; движение жгутиковых, инфузорий, сокращение мышц;

· Транспортная функция - гемоглобин крови;

· Защитная - антитела крови обезвреживают чужеродные вещества;

· Энергетическая функция - при расщеплении белков 1 г освобождает 17,6 кДж энергии;

· Регуляторная и гормональная - белки входят в состав многих гормонов и принимают участие в регуляции жизненных процессов организма;

· Рецепторная - белки осуществляют процесс избирательного узнавания отдельных веществ и их присоединение к молекулам.

Понятие о гистоновых и негистоновых белках

Гистоны - обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и во вторичной регуляции таких ядерных процессов, как транскрипция, репликация и репарация, проявляют сильно оснóвные свойства.

Негистоновые белки - это все белки хроматина, кроме гистонов, выделяющиеся с хроматином или хромосомами. Это сборная группа белков, отличающихся друг от друга как по общим свойствам, так и по функциональной значимости. Около 80% из негистоновых белков относится к белкам ядерного матрикса, обнаруживаемых как в составе интерфазных ядер, так и митотических хромосом. Гистоновые и негистоновые белки принимают участие в экспрессии генов, участвуют в создании структуры молекулы ДНК. Гистоновые белки - факторы репрессии (блокирования) генов, негистоновые - наоборот способствуют считыванию информации. Взаимодействие гистоновых и негистоновых белков – механизм блокирования и разблокирования молекулы ДНК.

Прионовые белки и их медицинское значение.

Прионы – модифицированные прионовые белки (содержат > 50 полиглютаминовых фрагментов). Прионовые белки – нейромедиаторы и регуляторы циркадных ритмов. Попадая в организм человека, прионы модифицируют (переделывают под себя) нормальные прионовые белки и вызывают следующие болезни: Куру, Кройцфельта-Якоба, смертельная семейная бессонница, Подострый спонгиозный трансмиссийный энцефалит и проч. Способы «заражения»: спонтанное возникновение в мозге прионов, ятрогения, наследственность, употребление в пищу «зараженного» мяса

9.Нуклеиновые кислоты. ДНК, её состав и структурная организация,

локализация в клетке. Биологическая роль.

Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

В природе существуют нуклеиновые кислоты двух типов, различающиеся по составу, строению и функциям. Одна из них содержит углеводный компонент дезоксирибозу и названа дезоксирибонуклеиновой кислотой (ДНК). Другая содержит рибозу и названа рибонуклеиновой кислотой (РНК).

ДНК, её состав

ДНК представляет собой двухцепочечный биологический полимер, мономерами которого являются нуклеотиды, содержащие одно из азотистых оснований, дезоксирибозу и остаток фосфорной кислоты. Нуклеотиды ДНК: пуриновые основания аденин (А) и гуанин (Г) и пиримидиновые основания цитозин (Ц) и тимин (Т).

структурная организация

Полинуклеотидные цепи молекулы ДНК антипараллельны и соединены друг с другом водородными связями по принципу комплиментарности в двойную спираль.

локализация в клетке

ДНК находится в ядре клетки в виде комплекса с ядерными белками (гистонами).
Еще есть своя особенная (кольцевая) ДНК в митохондриях (мтДНК) и в хлоропластах у растений (хлДНК). У бактерий ядра нет, поэтому и ДНК свободно плавает в цитозоле (внутриклеточная жидкость, матрикс цитоплазмы).

Биологическая роль

Функция у ДНК одна - хранение генетической информации.


Похожая информация.


Белки хроматина подразделяются на две группы: основные белки – гистоны и кислые, или негистоновые белки . Содержание гистонов в хроматине достигает 50 %, тогда как кислых белков обычно намного меньше – до 20 %. Однако в отличие от ДНК и гистонов, содержание которых в хроматине неделящихся клеток стабильно, количество кислых белков может меняться в зависимости от функционального состояния клетки.

Гистоны представляют собой небольшие белки (молекулярная масса 11-22 кД) с повышенным содержанием основных аминокислот – аргинина, лизина и гистидина. За счет этого их молекулы заряжены положительно и легко вступают в ионные связи с отрицательно заряженными молекулами ДНК.

Различают пять главных молекулярных форм гистонов - H1, H2A, H2B, H3 и H4. Все гистоны, кроме H1, имеют глобулярную форму и отличаются высокой эволюционной консервативностью. Наиболее богатый лизином гистон H1 отличается от других гистонов тканевой и видовой специфичностью. Молекула его содержит 223 аминокислотных остатка и формирует в физиологических условиях три домена. Первый домен образован 35 остатками на N-конце и заряжен положительно. Второй домен (с 36 по 121 остаток) формирует глобулярную структуру, а остальные остатки до C-конца принадлежат третьему домену, который отличается фибриллярной формой и высокой плотностью положительного заряда.

Гистоны взаимодействуют в хроматине с ДНК, обеспечивая пространственную укладку ее молекулы в ограниченном объеме ядра эукариотической клетки. Одновременно гистоны, в особенности гистон H1, участвуют в регуляции активности генов. В ядрах эритроцитов птиц гистон H1 замещен похожим на него гистоном H5, который вызывает тотальную конденсацию ДНК и полное подавление активности генов. Полная репрессия генетической активности наблюдается также в сперматозоидах, причем у некоторых насекомых, рыб, птиц и пресмыкающихся гистоны в ядрах этих клеток замещаются на протамины – короткие фибриллярные полипептиды с молекулярной массой около 5 кД, которые почти целиком состоят из основных аминокислот.

Кислые , или негистоновые, белки хроматина образуют значительно более разнообразную и многочисленную группу, чем гистоны. Общее количество различных молекулярных форм негистоновых белков в клетках составляет не менее 500. Многие из них, вероятно, обладают как видовой, так и тканевой специфичностью. Негистоновые белки отличаются высокой метаболической активностью и способностью к посттрансляционным модификациям. Среди них имеются различные ферменты, участвующие в метаболизме нуклеиновых кислот (полимеразы, топоизомеразы, метилазы, эндонуклеазы) и белков (протеинкиназы, фосфатазы, метилазы, ацетилазы, протеазы), транспортные и регуляторные белки, внутриядерные рецепторы гормонов и др.


Наиболее изученными негистоновыми белками хроматина является группа белков высокой подвижности – HMG (high mobility group). Первоначально они были обнаружены как примесь к гистону H1, отличаясь более высокой электрофоретической подвижностью. В настоящее время хорошо изучены 5 белков этой группы – HMG-1, -2, -14, -17, -20. Белки HMG-1 и HMG-2 (молекулярная масса 26 кД) имеют близкие последовательности, они способны приобретать глобулярную форму и связываться с ДНК. Белки HMG-14 и HMG-17 (молекулярная масса около 10 кД) также гомологичны между собой, но отличаются от предыдущих белков, обладая способностью связываться с гистонами. Белок HMG-20, или убиквитин (молекулярная масса 8,5 кД), содержится не только в ядре, но и в цитоплазме. Он способен ковалентно присоединяться к C- концу других белков, ускоряя их протеолиз. Так, например, при созревании эритроцитов удаление белков, уже выполнивших свою функцию, осуществляется путем АТФ-зависимого протеолиза с участием убиквитина. В ядре убиквитин присоединяется к гистону H2A, формируя белок A24, который локализован в местах активной транскрипции ДНК. Все HMG-белки содержат ДНК-связывающий домен (HMG-домен), состоящий из 80 аминокислотных остатков. В последнее время этот домен обнаружен и в других белках хроматина, например, в некоторых регуляторах транскрипции.

Все HMG-доменные белки подразделяются на два типа. К первому типу относятся HMG-1, HMG-2 и белок UBF, который регулирует РНК-полимеразу I, синтезирующую рРНК. Эти белки имеются у всех клеток, могут содержать несколько HMG-доменов, но не обладают селективностью к нуклеотидным последовательностям ДНК. Второй тип HMG-белков содержит только один домен, который узнает участки ДНК с высокой специфичностью. Эти белки встречаются у ограниченного числа клеточных типов. Примером может служить транскрипционный фактор LEF-1, который характерен для лимфоцитов. Белки, имеющие один HMG-домен, распознают и с высокой эффективностью связываются с нерегулярными структурами ДНК. К ним относятся одноцепочечные участки, крестообразные хиазмы, химически модифицированные участки и другие структуры в молекуле ДНК.